
1

Unlocking the Drive
Exploiting Tesla Model 3

2

David BERARD
SECURITY EXPERT

@_p0ly_

Who are we ?

Vincent DEHORS
SECURITY EXPERT

@vdehors

Reverse Engineering team

Offensive security

170 experts

Pentest, reverse engineering, development,

incident response

45 reversers

Low level research, reverse engineering,

vulnerability research, exploit development, etc.

3

Competition organized by ZDI

Took place in Vancouver (April 2023)
New Pwn2Own Automotive in Tokyo (Jan. 2024)

Pwn2own
& previous work

Pwn2Own 2022

Infotainment preauth RCE (Wifi)
& sandbox escape & 2 kernel bugs

4Pwn2own 2023
Timeline

GTW

Vulnerabilities

& exploit

Dec 2022

Bluetooth

Vulnerability

research

Mid Jan 2023

Bluetooth

Vulnerabilities

Mid Feb 2023

P2O

Event

22-23 mar 2023

Exploit

Stabilisation

& chaining

20-23 mar 2023

PC died
on the plane

Buy a new one

in Vancouver

20 mar 2023

Exploit
A useless

service

8 mar 2023

LPE

Start LPE

research

13 mar 2023

Bluetooth

Finalize

exploit

6 mar 2023

5Car architecture
Multimedia and vehicule domains separared by a gateway

Vehicle domain

Security

Gateway

Multimedia domain

CAN 1

CAN N

ECU 1 ECU 2

ECU 3

Infotainment

Connectivity

components

Actuators

Sensors

Actuators

Sensors

6Model 3 – Infotainment
Hardware

SoC Intel Atom or AMD RizenGateway: SPC5748GS

WiFi/BT

CANs

7Hardware setup
Lab

• Multiple Infotainment ECU

• Some from Ebay

• 2 provided by Tesla

• After pwn2own 2022, Tesla gave us SSH keys to

access our units

8

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

Attacker’s

PC

bsa_server process

Security Gateway

1

2

Firmwares update

app

3

Exploit chain
Chaining three exploits for a remote-to-CAN fullchain

9Vulnerability research
Usual Workflow for Vulnerability research

Static analysis
• Reverse engineering with Ghidra / IDA

• Help of debug symbols from another binary

Dynamic instrumentation
• Attacker device is a laptop with a standard bluetooth chip

• Bluez recompiled to add our exploit code

• Tesla Infotainment with SSH access and gdb

Remote GDB on physical ECU

Researcher’s laptop

gdb + pwndbg

Modified Bluez

Infotainment

gdb-server

bsa_server

SSH

TCP

Bluetooth

10Bluetooth features
Why does the car need Bluetooth ?

Spotify
Play music from a phone using Spotify

Message and contact synchro.
Display received messages on the infotainment

screen

Voice call
Compose and receive calls

Play music
Play music from a phone using Bluetooth standards

(supported by smartphones)

11Bluetooth stack
Implementation in the infotainment

Wifi / BT

Chip

Infotainment kernel Infotainment userland

UART
subsystem

TTYUART chardev

HCI

bsa_server btd
Qtcar-

bluetoothUNIX DBUS

Whole Bluetooth stack

12bsa-server
Custom Bluetooth stack

Big attack surface
A lot of bluetooth features are managed by this program

High probability of vulnerability
Closed source vendor code written in C

Custom allocator

Bad hardening
Binary compiled without PIE

Debug symbols
Similar binary with debug symbols found on Github

Natural target for an attacker

Looks like an exception in this heavily hardened system

Sandboxes

The process is still well sandboxed

13Bluetooth classic
A huge attack surface

All these acronyms are real

Bluetooth protocols / profiles

And there are much more…

GATT

L2CAP

OBEX

RFCOMM

SDP
HID

MAPSPP

SYNC

HCI

FTP

BNEP

AVDTP

HFP

PAN

DUN

AVRCP

14Bluetooth classic
Attack surface on Tesla car

Service Discovery (SDP)
Retrieves the service list provided by the peer

Advanced Audio Distribution Profile (A2DP)

Audio/Video Remote Control Profile (AVRCP)

Basic Imaging (BIP)

Profiles for Audio Playback

Protocol for audio streaming

Audio controls (play/stop, playlist management, …)

Allows to transfer the Cover Art image

Hardware / RF

HCI

L2CAP

RFCOMMSDP

OBEX

PROFILES

15BIP
Reaching the BIP surface

2
The car queries available Cover Art pictures using

OBEX protocol

1 Playback is configured by the phone (AVRC)

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<image-properties>
...
</image-properties>

3
The phone send available images description using

OBEX protocol

4 The car downloads and displays one image

<image-descriptor version=‘1.0’>…</image-descriptor>

OBEX GET x-bt/img-img

OBEX Response

16Vulnerability in BIP
OOB Write

▪ In the BIP parsing function (bip_xp_parse)

▪ Parsing result is stored in an allocation of 0x2800 bytes containing an array of images metadata

▪ Adding an « attachment » fills 0x100 bytes, 38 are enough to overflow (limit is 256, due to a bug)

▪ Allows writing controlled bytes after the end of an allocation (custom allocator)

Heap buffer overflow in the BIP protocol implementation

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<image-properties>
<attachment />
<attachment />
<attachment />
...
<attachment name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" />
</image-properties>

17

< chunk data > < chunk data >

Heap exploitation
Bsa-server custom heap

p_first

🤯
Custom heap management from a code base called GKI

▪ Allocations located in arrays in the data section (no PIE = no ASLR)

▪ Very few corruption checks compared to the glibc

p_next

id tid st type

ddbaddba

id tid st type

ddbaddba

p_next
Arbitrary

write

18Code execution
Taking over a timer, again…

Fake timerApplication
timer queue

Arbitrary
Call

Arbitrary
write

Stack Pivot ROP

Main loop

Shellcode
(Small)All addresses are located in the binary (globals, gadgets)

so they are already known

Injected C program (stage1)

19The end ?
What can we do with this code execution ?

• Dedicated UID

• No useful capability

• No network

• All sandboxes activated

• But two legitimate APIs

• TTY communication

• One UNIX socket to

communicate with btd

➢ Limited attack surface

processprocessbsa_server

Kafel
• Syscalls filtering

AppArmor
• Whitelist for file access

• Cannot execute anything

Minijail
• Dedicated chroot

• Empty network stack

20

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

H
C

I

Stage1 payload

• bsa_server communicates with Bluetooth

chipset through HCI protocol

• Vendor specific commands are used to

initialize the chipset (i.e. load Bluetooth

firmware patches)

• At least HCI_BRCM_WRITE_RAM and

HCI_BRCM_SUPER_PEEK_POKE

commands allow arbitrary writting to the

internal chipset memory

• So stage1 injected in bsa_server can write

inside the chipset memory

LPE
Arbitrary write inside the chipset firmware

21

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

H
C

I

Stage1 payload

• Bluetooth firmware and WiFi firmware share

some memory regions

• WiFi firmware RAM code is mapped at

address 0x500000 in the Bluetooth part

• HCI_BRCM_WRITE_RAM HCI command

allows writing to the WiFi firmware RAM code

• WiFi firmware runs on an ARM core

• So stage1 injected in bsa_server can patch

WiFi firmware to inject custom code

• WiFi Firmware Idle task is patched to jump on

the injected code: stage2

LPE
Gaining code execution inside the WiFi chipset

Shared memory Stage2 payload

22

Stage1 WiFi code injector

Patched WiFi Firmware idle_thread to jump in stage2

LPE
Code execution inside the WiFi chipset

23

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

Stage1 payload

• WiFi part of the chipset uses PCIe to

communicate with the main processor

 - DMA

 - Mailbox

• WiFi is managed by the BCMDHD Linux driver

• Stage2 in the WiFi firmware is well placed to

attack the Linux driver

LPE
Attack surface from the chipset

Stage2 payload

PCIe

24

• Some structures are shared between chipset and

driver, like pciedev_shared_t / ring_info_t

• These structures are reloaded from the chipset

memory while handling a mailbox interrupt

- In normal operation: during chipset startup, and

chipset software crash

• Stage2 can generate the mailbox interrupt to fill the

structure ring_info_t

LPE
Bcmdhd to chipset memory structures

25

TCM ioremap buffer

write

• d2h_r_idx_ptr is used as an offset to write inside a ioremap region (TCM)

• The offset is not checked to be in the TCM region!

• Ioremap places addresses in the vmalloc region

• Stage2 can write out of bound after the ioremap TCM region by setting d2h_r_idx_ptr to a value bigger

than the TCM size

• Need to find something to write on!

LPE
Out-of-bound write in bcmdhd

26

• Process Kernel Stacks are good candidates

 - Are in vmalloc region (allocated in _do_fork function)

 - Can be sprayed from Stage1 by forking process multiple times

 - Process children can be blocked in a syscall to stay in Kernel (i.e. clock_nanosleep)

 - Write to Process Kernel Stacks is a powerful primitive => direct ROP after unblocking syscall

• Thanks to a big buffer allocated by the GPU driver, the offset (from TCM) of a process kernel stack is fixed

• Stage2 (payload in WiFi firmware) can patch a process kernel stack of a child of Stage1 (payload in

bsa_server) blocked in clock_nanosleep

TCM ioremap buffer

write

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

i915_ggtt_init_hw

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

d
o

_
fo

rk

0x20007000

Fixed offset

LPE
Out-of-bound write exploitation

27KASLR bypass
& hardened kernel configuration 

0xffffffff81000000
0xffffffff82000000

0xffffffff83000000

...
0xffffffffbf000000

https://www.willsroot.io/2022/12/entrybleed.html

Random kernel base address
But not a lot of possibilities…

Reading a nice blogpost on side-
channels at the same time…

Similar side-channel issue
Prefetch times differ

ffffffffb0900000 179

ffffffffb0a00000 138

ffffffffb0b00000 136

ffffffffb0c00000 44

…

ffffffffb1300000 179

🤔

28

End of a kernel process stack

0xffffc90024007f50 │ 75 00 a0 81 ff ff ff ff 44 44 44 44 44 44 44 44 │

0xffffc90024007f60 │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 │

0xffffc90024007f70 │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 │

0xffffc90024007f80 │ 44 44 44 44 44 44 44 44 42 02 00 00 00 00 00 00 │

0xffffc90024007f90 │ 00 00 00 00 00 00 00 00 44 44 44 44 44 44 44 44 │

0xffffc90024007fa0 │ 44 44 44 44 44 44 44 44 da ff ff ff ff ff ff ff │

0xffffc90024007fb0 │ b1 d2 23 92 c0 55 00 00 c0 ed 63 db ff 7f 00 00 │

0xffffc90024007fc0 │ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 │

0xffffc90024007fd0 │ e6 00 00 00 00 00 00 00 b1 d2 23 92 c0 55 00 00 │

0xffffc90024007fe0 │ 33 00 00 00 00 00 00 00 42 02 00 00 00 00 00 00 │

0xffffc90024007ff0 │ 80 ec 63 db ff 7f 00 00 2b 00 00 00 00 00 00 00 │

Last return address
Some controllable saved task registers (used to restore register values)

Strategy

Pivot

1. Replace Return address by a RET gadget address

(that is executed when the clock_nanosleep

syscall ends)

2. Use saved register as a first ROP chain

Ropchain 1 (in saved registers)

1. Jump in copy_from_user to fill the Kernel process

stack with a second ROP chain

Ropchain 2

1. Jump in copy_from_user to override poweroff_cmd

string in the kernel memory with the command we

want to start

2. Call poweroff_work_func to start the command as

root with User Mode Helper Linux subsystem

3. Call do_exit to end the task properly

LPE
ROP chain

29LPE
root code execution

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

Stage1 payload

Stage2 payload

Stage3

Executed as root

from the kernel

30

31LPE
root code execution

Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

Stage1 payload

Stage2 payload

Stage3

Executed as root

from the kernel

ETHERNET

Security Gateway

32GTW
Security Gateway architecture

Same PCB as Infotainment
—

SoC NXP MCP5748G
—

FreeRTOS PPC-VLE
—

No hardware based secure-boot
—

Uses its own internal flash for software

SYSTEM

Ethernet
—

CAN buses (Chassis/Party/Vehicle)

NETWORKS

Filter CAN messages
—

Save log files
—

Update mode
Update other ECUs and itself

—
Provide sensitive information to other

ECU
(VIN/Serial/…)

—
Config Ethernet switch

Features

33GTW
Security Gateway software & attack surface

• 3 main software parts

- Bootloader

- Selects between the two following modes and do software secure boot

- Update mode

- Fetches updates on the infotainment through TFTP

- Checks them and updates ECUs through CAN

- Main App mode

- Handles CAN over UDP messages and filters them

- Provides access to some sensitive values (VIN, autopilot subscriptions

etc..)

- Acts as a log server

34GTW
Security Gateway exploit

• GTW uses fixed addresses (no ASLR, code is in the internal flash)

• Seems to be greatly audited, and safely developed

• Logic TOCTOU bug inside the update mode => 100% stable

35

Security Gateway

GTW
Booting the update mode

Infotainment

UDP_API (port 3500)

TCP xfer (port 1050)XFER UPDATE.IMG

REBOOT_FOR_UPDATE

SDCARD

Bootloader

(ROM)

Update mode

(RAM)

Firmware main

App

(ROM)

Write on SDCARD

Read & verify

signature

REBOOT

Load & Boot

36

Security Gateway

GTW
Update mode interactions

Infotainment

TFTP Server

SDCARD

Write on SDCARD

Read

/deploy
Temp files

(ECU_ID)

ECUsInternal ROM

C
A

N

W
R

IT
E

Update mode

(RAM)

Phase 2
Apply without verify

Update mode

(RAM)

Phase 1
Fetch & verify

37

Security Gateway

GTW
Update mode two phase mode

Infotainment

TFTP Server

/deploy

Update mode

(RAM)

Phase 2
Apply without verify

Update mode

(RAM)

Phase 1
Fetch & verify

FETCH 1

FETCH 2

FETCH 3

FETCH 4

APPLY 1

APPLY 2

APPLY 3

APPLY 4

38GTW
BUG

• Update mode can be forced to fetch two times the same ECU update

• The first time if the file has a good signature the update is scheduled to be

applied, and the file is saved on the SDCARD

• The second fetch overrides the file on the SDCARD, if the signature is invalid

the first one is still scheduled, and the bad temporary file is not removed

• When applying updates, the signature is not re-checked, so the badly signed file

is applied

• This bypasses the signature check, and allows an attacker to apply arbitrary

updates, and can be used to gain code execution on the security gateway

39GTW
Secure boot

Security Gateway

Bootloader

(ROM)

Update mode

(sdcard -> RAM)

Update mode

(TFTP -> RAM)

App Mode

(ROM)

SDCARD / FAT32

driver
TFTP client

ED25519 Signature verification

Internal Flash

• Bootloader verifies next stages

• Hardware (NXP chip) doesn’t provide

secure boot, bootloader in the internal

flash is never verified

• Gateway update mode allows to update

its own firmware, including the

bootloader

• Signature bypass in update mode =>

code exec in bootloader

40GTW
Secure boot

Security Gateway

Bootloader

(ROM)

Update mode

(sdcard -> RAM)

Update mode

(TFTP -> RAM)

App Mode

(ROM)

SDCARD / FAT32

driver
TFTP client

ED25519 Signature verification

Internal Flash

• Bootloader patch

• Remove ED25519 signature check

• Use Update mode boot mechanism to

boot on a controlled firmware

• Controlled firmware has unrestricted

access to the CAN vehicle & chassis

buses

41

Security Gateway

Access to CAN busses
Infotainment

WIFI/BT CHIP BCM4359

Bluetooth Firmware WiFi Firmware

Linux Kernel

BCMDHD driver

Linux Userland

bsa_server process

Stage1 payload

Stage2 payload

Stage3

Executed as root

from the kernel

ETHERNET CAN ECUs
Stage4

Custom firmware

From remote to CAN

42

• bsa_server is now a PIE binary and the vulnerability has been

patched

• Bcmdhd vulnerability is patched

• Security GTW

• Now moves files with a specific name when signature is

correct

• Manifest is now signed

• If a signature check fails, the file is deleted from the SDcard

Fixes
Tesla Response

43

Synacktiv was Master Of Pwn for the second time with many entries

(Windows/macOS/Ubuntu/VirtualBox/Tesla)

First Tier 2 entry ever (could have been a Tier 1 but we had chosen

to split RCE+LPE and Gateway entries)

Pwn2Own 2023

44Conclusion

Great support from Tesla

Not so long of a work

Strong knowledge of the Tesla cars architecture (Pwn2Own 2022)

Hardware and debug facilities

Not well hardened binary

Tesla provided us an ECU that can receive updates

ZDI and Tesla gave us updates

Version freeze 1 month before the event

Thanks to them

Was fun

We won a car for our future research ☺

45

www.linkedin.com/company/synacktiv

www.twitter.com/synacktiv

www.synacktiv.com

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45

