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Introduction
 Targeting Ubuntu for Pwn2Own Vancouver (May  18, 2022)
 Need to find and exploit a kernel vulnerability to gain root 

access
 Motivations

 Learn more about Linux kernel internals
 Learn new techniques to exploit kernel vulnerabilities
 $40,000 bounty
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Kernel code review
and vulnerability research
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Code Review - Attack surface
 Kernel source code is huge, where to start ?
 Previous success from my colleague Vincent Dehors

 Found and exploited an Ubuntu vulnerability for the contest
 His work is described in his blog post

 TLDR: Look for vulnerabilities in uncommon surfaces that are 
less audited
 By default Ubuntu allows users to create namespaces

$ sudo sysctl kernel.unprivileged_userns_clone
kernel.unprivileged_userns_clone = 1

https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492
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Code Review - Namespace introduction
 Namespace is a feature that provides process isolation
 Used to create a separate set of resources
 Useful for creating containers (such as docker, LXC, etc.)
 Types of namespaces

 mount - Isolates filesystem mount points → Focus on this one
 process ID 
 network
 IPC
 …
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Code Review - mount and file systems
 Filesystems that have the flag FS_USERNS_MOUNT can be set 

up by a unprivileged user

 VFS surfaces:

static struct file_system_type shiftfs_type = {
.owner = THIS_MODULE,
.name = "shiftfs",
.mount = shiftfs_mount,
.kill_sb = kill_anon_super,
.fs_flags = FS_USERNS_MOUNT,

};

● android/binderfs
● mqueue
● shmem
● sysfs
● ramfs (tmpfs)
● overlayfs

● proc
● aufs
● fuse
● shiftfs (specific to Ubuntu)
● devpts
● cgroup
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Code Review - VFS overview



10

10/65GREHACK23

Code Review - Attack surface
 File manipulations

 open, read, write, fnctl …
 Race condition on concurrent access
 Logical bugs

 Mounting syscalls and options
 mount, fsopen, fspick, fsconfig

 mount [-fnrsvw] [-t fstype] [-o options] device mountpoint
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Code Review - Read the doc !
 Read Kernel VFS documentation

 Learn how this kernel subsystem works

 Study past CVEs that affected kernel Filesystems
 Study errors that should not be made

 Read blog posts about kernel exploitation
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Code Review - Let’s go
 Review accessible filesystems one by one

 Skip shiftfs because my colleague already found things in it!

 About 3 weeks (not in full time)
 Still nothing …

 Start looking at shiftfs implementation
 BINGO! There is a bug!
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Code Review - shiftfs overview
 This filesystem is a passthrough used to change (shift) the 

user unix permissions on file access or modification



Code Review - The lock shiftfs bug
static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
                umode_t mode, const char *symlink,
                struct dentry *hardlink, bool excl)
{
    // [...]
    struct inode *inode = NULL, *loweri_dir = diri->i_private;
    const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

    if (hardlink) {
        loweri_iop_ptr = loweri_dir_iop->link;
    } else {
        switch (mode & S_IFMT) {
        case S_IFDIR:
            loweri_iop_ptr = loweri_dir_iop->mkdir;
            break;
        case S_IFREG:
            loweri_iop_ptr = loweri_dir_iop->create;
            break;
        case S_IFLNK:
            loweri_iop_ptr = loweri_dir_iop->symlink;
            break;
        case S_IFSOCK:
            /* fall through */
        case S_IFIFO:
            loweri_iop_ptr = loweri_dir_iop->mknod;
            break;
        }
    }
    if (!loweri_iop_ptr) {
        err = -EINVAL;
        goto out_iput;
    }
    inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
    // [...]
out_iput:
    iput(inode);
    inode_unlock(loweri_dir);

    return err;
}

Function that creates 
objects (file, dir, links) in 
the underlying FS 
directory



Code Review - The lock shiftfs bug
static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
                umode_t mode, const char *symlink,
                struct dentry *hardlink, bool excl)
{
    // [...]
    struct inode *inode = NULL, *loweri_dir = diri->i_private;
    const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

    if (hardlink) {
        loweri_iop_ptr = loweri_dir_iop->link;
    } else {
        switch (mode & S_IFMT) {
        case S_IFDIR:
            loweri_iop_ptr = loweri_dir_iop->mkdir;
            break;
        case S_IFREG:
            loweri_iop_ptr = loweri_dir_iop->create;
            break;
        case S_IFLNK:
            loweri_iop_ptr = loweri_dir_iop->symlink;
            break;
        case S_IFSOCK:
            /* fall through */
        case S_IFIFO:
            loweri_iop_ptr = loweri_dir_iop->mknod;
            break;
        }
    }
    if (!loweri_iop_ptr) {
        err = -EINVAL;
        goto out_iput;
    }
    inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
    // [...]
out_iput:
    iput(inode);
    inode_unlock(loweri_dir);

    return err;
}

If a file operation is not 
implemented, the pointer 
is set to NULL



static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
                umode_t mode, const char *symlink,
                struct dentry *hardlink, bool excl)
{
    // [...]
    struct inode *inode = NULL, *loweri_dir = diri->i_private;
    const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

    if (hardlink) {
        loweri_iop_ptr = loweri_dir_iop->link;
    } else {
        switch (mode & S_IFMT) {
        case S_IFDIR:
            loweri_iop_ptr = loweri_dir_iop->mkdir;
            break;
        case S_IFREG:
            loweri_iop_ptr = loweri_dir_iop->create;
            break;
        case S_IFLNK:
            loweri_iop_ptr = loweri_dir_iop->symlink;
            break;
        case S_IFSOCK:
            /* fall through */
        case S_IFIFO:
            loweri_iop_ptr = loweri_dir_iop->mknod;
            break;
        }
    }
    if (!loweri_iop_ptr) {
        err = -EINVAL;
        goto out_iput;
    }
    inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
    // [...]
out_iput:
    iput(inode);
    inode_unlock(loweri_dir);

    return err;
}

Code Review - The lock shiftfs bug

unlock is performed without the lock!

If a file operation is not 
implemented, the pointer 
is set to NULL
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Code Review - Trigger the bug
 Find a filesystem (FS_USERNS_MOUNT) that does not 

implement mkdir, create, symlink, link or mknod in its 
inode_operations structure
 mqueue is a good candidate

// Extract from ipc/mqueue.c
static const struct inode_operations mqueue_dir_inode_operations = {

.lookup = simple_lookup,

.create = mqueue_create,

.unlink = mqueue_unlink,
};
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user@user-VirtualBox:~$ cd /tmp
user@user-VirtualBox:/tmp$ unshare -U -r -i -m

root@user-VirtualBox:/tmp# mkdir d1 d2
root@user-VirtualBox:/tmp# mount -t mqueue none d1
root@user-VirtualBox:/tmp# mount -t shiftfs -o mark d1 d2
root@user-VirtualBox:/tmp# mkdir d2/foo
mkdir: cannot create directory ‘d2/foo’: Invalid argument
root@user-VirtualBox:/tmp# mkdir d2/foo

Code Review - Trigger the bug
 Trigger the bug

 The last “mkdir d2/foo” is now blocked…
 After several seconds



Code Review - Trigger the bug
[ 1208.882315] INFO: task mount:2539 blocked for more than 120 seconds.
[ 1208.885949]       Tainted: G           OE     5.13.0-28-generic #31-Ubuntu
[ 1208.887870] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1208.888944] task:mount           state:D stack:    0 pid: 2539 ppid:  1145 flags:0x00000004
[ 1208.890154] Call Trace:
[ 1208.890586]  <TASK>
[ 1208.890887]  __schedule+0x268/0x680
[ 1208.891379]  schedule+0x4f/0xc0
[ 1208.891817]  rwsem_down_read_slowpath+0x33a/0x3a0
[ 1208.892465]  down_read+0x43/0x90
[ 1208.892912]  walk_component+0x132/0x1b0
[ 1208.893440]  ? path_init+0x2c1/0x3f0
[ 1208.893973]  path_lookupat+0x6e/0x1c0
[ 1208.894505]  filename_lookup+0xbf/0x1c0
[ 1208.894999]  ? __check_object_size.part.0+0x128/0x150
[ 1208.895633]  ? __check_object_size+0x1c/0x20
[ 1208.896172]  ? strncpy_from_user+0x44/0x140
[ 1208.896693]  ? __do_sys_getcwd+0x150/0x1f0
[ 1208.897216]  user_path_at_empty+0x59/0x90
[ 1208.897715]  do_readlinkat+0x5d/0x120
[ 1208.898218]  __x64_sys_readlink+0x1e/0x30
[ 1208.898840]  do_syscall_64+0x61/0xb0
[ 1208.899289]  ? do_syscall_64+0x6e/0xb0
[ 1208.899766]  ? exit_to_user_mode_prepare+0x37/0xb0
[ 1208.900366]  ? syscall_exit_to_user_mode+0x27/0x50
[ 1208.900962]  ? __x64_sys_close+0x11/0x40
[ 1208.901458]  ? do_syscall_64+0x6e/0xb0
[ 1208.901971]  ? __x64_sys_read+0x19/0x20
[ 1208.902545]  ? do_syscall_64+0x6e/0xb0
[ 1208.903026]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 1208.903651] RIP: 0033:0x7feb9e52416b
[ 1208.904104] RSP: 002b:00007ffd0cfe12d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000059
[ 1208.905038] RAX: ffffffffffffffda RBX: 00007ffd0cfe1740 RCX: 00007feb9e52416b
[ 1208.905999] RDX: 00000000000003ff RSI: 00007ffd0cfe1750 RDI: 00007ffd0cfe1bb0
[ 1208.907142] RBP: 00007ffd0cfe1bb0 R08: 0000000000000000 R09: 0000412500000000
[ 1208.907985] R10: 00007feb9e5df040 R11: 0000000000000202 R12: 00007ffd0cfe1bbe
[ 1208.909123] R13: 00007ffd0cfe1ba0 R14: 00007ffd0cfe1750 R15: 00000000000003ff
[ 1208.910187]  </TASK>



20

20/65GREHACK23

Exploitation
(How to get root with this bug?)
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Exploitation - The objective
 Perform a Local Privilege Escalation (LPE) and get root

 Need to modify our process permissions to change the UID to 0 
(root user)

 We do not need kernel code execution
 Having kernel read and write primitives is enough
 We also need a kernel pointer leak

 To bypass the KASLR
 To locate the data related to our process in the kernel memory
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Exploitation - Side effect of the bug ?
 How to turn this locking bug into something useful ?
 The bug unlocks a directory lock

 What does it protect?
 What could happen if such a lock is wrongfully unlocked?
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Exploitation - Example lock usage

file_1

file_2

directory

 When the content of the 
directory is modified the 
lock is taken
 Create a file, a folder, a link
 Remove a file

 This prevents concurrent 
access and race conditions 
during directory 
modifications

Example of a mqueue FS
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Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

i_count=N

Note: i_count is the inode usage count. When it hits zero, it is freed
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Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

unlink file_1

inode_lock 

 Process A starts to remove a file, the directory inode is locked

i_count=N
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Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

open file_1
inode_lock 

 At the same time, Process B wants to open it

As the lock is locked, it will wait

unlink file_1
i_count=N
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Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process A removes the link and decrements the usage counter

Wait...

i_count=N-1
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Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process A continues the unlink …

i_count=N-1file_1

Wait...

Parent link has been removed
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Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

 Process A finishes the unlink

inode_unlock

file_1 i_count=N-1

open file_1

Wait...
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Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process B is resumed

file_1 i_count=N-1
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Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process B continues and returns an error

file_1 does not exist because it is not 
linked to the directory!

file_1 i_count=N-1

Now can lock the directory
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Exploitation - A reminder about the bug
 If we perform an action which is not implemented (like mkdir) 

shiftfs will unlock the inode directory
 We can have several processes doing modifications in the same 

directory at the same time
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Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

 Remember when Process B was waiting for the lock...

i_count=Nfile_1
open file_1

Wait...
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Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

mkdir(directory/foo)
inode_unlock

unlink file_1
i_count=N

Process C

Process B starts doing things whereas Process A did not finished

open file_1
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Exploitation - Taking advantage of the bug
 During an unlink, the i_count value is decremented 

 The reference due to the link with the directory inode is removed
→ During 2 simultaneous unlinks the i_count could be 
decremented twice

 We can reach zero while the system is still using the inode
 The inode will be freed and in an Use-After-Free state
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Exploitation - How to get an UAF ?

Process A Process B

unlink file_1 unlink file_1

Process C

sync starts

mkdir

unblock waiting process

 Exploit idea
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Exploitation - How to get an UAF ?

Process A Process B

unlink file_1 unlink file_1

Process C

mkdir

??????

 Reality...

race window is narrow
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Exploitation - How to work on a race condition
 Work with a minimal setup

 Minimal but representative kernel in QEMU (same kernel configuration)
 Be able to build and to test quickly

 Some tips used
 Start to add a comfortable sleep to increase the race window.

 The longer it takes, the easier it is to win the race!
 Measure the timing to test your ideas using rdtsc()
 Assign a process to a specific CPU and set its task priority.

 Kernel scheduler exploitation tricks and technical
 Racing against the clock by Jann Horn (Google Project Zero)
 ExpRace Academic Paper (Yoochan Lee, Changwoo Min, Byoungyoung Lee)

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf
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Exploitation - Increasing the race window
 By measuring the unlink race window, we observe that 

registering some inotify events increases the duration of the 
unlink operation!
 Without: mean   9258953 ( on 10 000 tests)
 With: mean 17359443 ( + ~90%)

 Prior to triggering the race, another process registers an 
inotify to receive notifications when a deletion occurs in the 
folder
 Success rate ~ 1/100 attempts (only takes few seconds)
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Exploitation - Some Race window statistics

The use of inotify increases the duration of the unlink race window!
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Exploitation - Winning the race

Process A Process B

i_count = 1

file_1

directory
Process C
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Exploitation - Winning the race

Process A Process B

i_count = 2

file_1

directory
Process C

usage counter is incremented

fd = open(file_1)
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Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

fd
fd2 = open(file_1)

usage counter is incremented
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Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

inotify: be notified on deletion

Waiting for events

fd
fd2
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Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Waiting for events

unlink unlink
fd
fd2
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Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Waiting for events

unlink unlink
Waiting for the lock

fd
fd2



47

47/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Event IN_DELETE received

unlink unlink
Waiting for the lock

send event
wake

fd
fd2
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Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

unlink unlink
waiting for the lock

mkdir(directory/foo) → unlock

fd
fd2
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Process A Process B

i_count = 3

file_1

directory
Process C

unlink unlink wake B

mkdir(directory/foo) → unlock

fd
fd2

Exploitation - Winning the race

2 simultaneous unlinks → i_count will be decremented twice
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Process A Process B

i_count = 1

file_1

directory
Process C

unlink unlink
fd
fd2

Exploitation - Winning the race

2 simultaneous unlinks → i_count will be decremented twice
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Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file 

descriptors fd and fd2 linked 
to file_1
 We can chose when file_1 

will be deleted by closing fd

i_count = 1

file_1
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i_count = 0

file_1

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file 

descriptors fd and fd2 linked 
to file_1
 We can chose when file_1 

will be deleted by closing fd
close(fd)
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i_count = 0

FREED

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file 

descriptors fd and fd2 linked 
to file_1
 We can chose when file_1 

will be deleted by closing fd
close(fd)
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i_count = 0

FREED

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file 

descriptors fd and fd2 linked 
to file_1
 We can chose when file_1 

will be deleted by closing fd
 We can later access this file 

using the remaining FD
read(fd2)

It is a Use-After-Free!
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Exploitation - Exploiting the UAF
 We are now in a classic Use-After-Free (UAF) situation
 There's no time to go into further details in this presentation :(
 All the exploitation steps are as follows

 Win the race to have a UAF
 Reuse the freed inode with the controlled data

 (not simple because the inode is in a dedicated slab …)
 Create kernel read/write primitives
 Leak a kernel pointer
 Patch the process credentials to elevate to root privileges
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Exploitation - Exploiting the UAF

Reuse with arbitrary data !
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Exploitation - Testing on the up to date Ubuntu
 Trying the race on the up to date Ubuntu VM …
 It did not work as expected

 If the exploit loses the race, the CPU is stuck!
 Have only 1 try by CPU…

 Why this behavior? The shiftfs code did not change!
→ A patch in the kernel lock (commit d257cc8c)

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/impish/commit/kernel/locking/rwsem.c?id=5ef8752150e0ccd5da64d8c783ed2bc9814fd62a
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Exploitation - I Gave up 
 Winning a race with just one attempt by the CPU seems impossible... I gave up
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Bug reported to Ubuntu
 Got the CVE-2023-2612 with the following patch

diff --git a/fs/shiftfs.c b/fs/shiftfs.c
index a76391c2246a..dab08fdd6638 100644
--- a/fs/shiftfs.c
+++ b/fs/shiftfs.c
@@ -409,6 +409,8 @@ static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;
 struct dentry *lowerd_link = NULL;
 
+ inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
+
 if (hardlink) {
 loweri_iop_ptr = loweri_dir_iop->link;
 } else {
@@ -434,8 +436,6 @@ static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 goto out_iput;
 }
 
- inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
-
 if (!hardlink) {
 inode = new_inode(dir_sb);
 if (!inode) {

https://ubuntu.com/security/CVE-2023-2612
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While preparing Grehack slides…
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IDEA - Improve the race success
 Using a process that uses inotify on the directory increases 

the race window
 What if several processes do the same?

 We can register up to 128 processes to monitor deletions in the 
directory

 limited by /proc/sys/fs/inotify/max_user_instances
 This strategy significantly increases the success rate (by more than 50%)

 The race condition can be won even with the kernel locking 
patch
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IDEA - Improve the race success
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Conclusion
 A very interesting study, learned a lot about Linux VFS 

internals
 Namespaces are a very interesting attack surface

 Ubuntu plans to restrict them for Ubuntu 23.10
 Do not give up too fast!

 Take a step back
 There is perhaps a solution



64

64/65GREHACK23

References
 Vincent Dehors shiftfs exploitation (CVE-2021-3492)
 VFS documentation

 Linux VFS documentation
 Exploit a race

 Racing against the clock by Jann Horn (Google Project Zero)
 ExpRace Academic Paper (Yoochan Lee, Changwoo Min, 

Byoungyoung Lee)
 Slab exploitation (page-level heap fengshui)

 https://etenal.me/archives/1825 (Xiaochen Zou and Zhiyun Qian)

https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf
https://etenal.me/archives/1825


65

GREHACK23

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
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