
1

GREHACK23

Ubuntu Shiftfs: Unbalanced
Unlock Exploitation Attempt

CVE-2023-2612
Grehack 2023

2

2/65GREHACK23

Agenda

 Introduction
 Code review and bug discovery
 Exploitation
 Conclusion

3

3/65GREHACK23

Presentation
 Jean-Baptiste Cayrou

 Security researcher @Synacktiv
 In the Reverse Engineering team

 Synacktiv
 Offensive security company
 Based in France
 ~170 Ninjas
 We are hiring! @jbcayrou

https://twitter.com/Synacktiv

4

4/65GREHACK23

Introduction
 Targeting Ubuntu for Pwn2Own Vancouver (May 18, 2022)
 Need to find and exploit a kernel vulnerability to gain root

access
 Motivations

 Learn more about Linux kernel internals
 Learn new techniques to exploit kernel vulnerabilities
 $40,000 bounty

5

5/65GREHACK23

Kernel code review
and vulnerability research

6

6/65GREHACK23

Code Review - Attack surface
 Kernel source code is huge, where to start ?
 Previous success from my colleague Vincent Dehors

 Found and exploited an Ubuntu vulnerability for the contest
 His work is described in his blog post

 TLDR: Look for vulnerabilities in uncommon surfaces that are
less audited
 By default Ubuntu allows users to create namespaces

$ sudo sysctl kernel.unprivileged_userns_clone
kernel.unprivileged_userns_clone = 1

https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492

7

7/65GREHACK23

Code Review - Namespace introduction
 Namespace is a feature that provides process isolation
 Used to create a separate set of resources
 Useful for creating containers (such as docker, LXC, etc.)
 Types of namespaces

 mount - Isolates filesystem mount points → Focus on this one
 process ID
 network
 IPC
 …

8

8/65GREHACK23

Code Review - mount and file systems
 Filesystems that have the flag FS_USERNS_MOUNT can be set

up by a unprivileged user

 VFS surfaces:

static struct file_system_type shiftfs_type = {
.owner = THIS_MODULE,
.name = "shiftfs",
.mount = shiftfs_mount,
.kill_sb = kill_anon_super,
.fs_flags = FS_USERNS_MOUNT,

};

● android/binderfs
● mqueue
● shmem
● sysfs
● ramfs (tmpfs)
● overlayfs

● proc
● aufs
● fuse
● shiftfs (specific to Ubuntu)
● devpts
● cgroup

9

9/65GREHACK23

Code Review - VFS overview

10

10/65GREHACK23

Code Review - Attack surface
 File manipulations

 open, read, write, fnctl …
 Race condition on concurrent access
 Logical bugs

 Mounting syscalls and options
 mount, fsopen, fspick, fsconfig

 mount [-fnrsvw] [-t fstype] [-o options] device mountpoint

11

11/65GREHACK23

Code Review - Read the doc !
 Read Kernel VFS documentation

 Learn how this kernel subsystem works

 Study past CVEs that affected kernel Filesystems
 Study errors that should not be made

 Read blog posts about kernel exploitation

12

12/65GREHACK23

Code Review - Let’s go
 Review accessible filesystems one by one

 Skip shiftfs because my colleague already found things in it!

 About 3 weeks (not in full time)
 Still nothing …

 Start looking at shiftfs implementation
 BINGO! There is a bug!

13

13/65GREHACK23

Code Review - shiftfs overview
 This filesystem is a passthrough used to change (shift) the

user unix permissions on file access or modification

Code Review - The lock shiftfs bug
static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 umode_t mode, const char *symlink,
 struct dentry *hardlink, bool excl)
{
 // [...]
 struct inode *inode = NULL, *loweri_dir = diri->i_private;
 const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

 if (hardlink) {
 loweri_iop_ptr = loweri_dir_iop->link;
 } else {
 switch (mode & S_IFMT) {
 case S_IFDIR:
 loweri_iop_ptr = loweri_dir_iop->mkdir;
 break;
 case S_IFREG:
 loweri_iop_ptr = loweri_dir_iop->create;
 break;
 case S_IFLNK:
 loweri_iop_ptr = loweri_dir_iop->symlink;
 break;
 case S_IFSOCK:
 /* fall through */
 case S_IFIFO:
 loweri_iop_ptr = loweri_dir_iop->mknod;
 break;
 }
 }
 if (!loweri_iop_ptr) {
 err = -EINVAL;
 goto out_iput;
 }
 inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
 // [...]
out_iput:
 iput(inode);
 inode_unlock(loweri_dir);

 return err;
}

Function that creates
objects (file, dir, links) in
the underlying FS
directory

Code Review - The lock shiftfs bug
static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 umode_t mode, const char *symlink,
 struct dentry *hardlink, bool excl)
{
 // [...]
 struct inode *inode = NULL, *loweri_dir = diri->i_private;
 const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

 if (hardlink) {
 loweri_iop_ptr = loweri_dir_iop->link;
 } else {
 switch (mode & S_IFMT) {
 case S_IFDIR:
 loweri_iop_ptr = loweri_dir_iop->mkdir;
 break;
 case S_IFREG:
 loweri_iop_ptr = loweri_dir_iop->create;
 break;
 case S_IFLNK:
 loweri_iop_ptr = loweri_dir_iop->symlink;
 break;
 case S_IFSOCK:
 /* fall through */
 case S_IFIFO:
 loweri_iop_ptr = loweri_dir_iop->mknod;
 break;
 }
 }
 if (!loweri_iop_ptr) {
 err = -EINVAL;
 goto out_iput;
 }
 inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
 // [...]
out_iput:
 iput(inode);
 inode_unlock(loweri_dir);

 return err;
}

If a file operation is not
implemented, the pointer
is set to NULL

static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 umode_t mode, const char *symlink,
 struct dentry *hardlink, bool excl)
{
 // [...]
 struct inode *inode = NULL, *loweri_dir = diri->i_private;
 const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;

 if (hardlink) {
 loweri_iop_ptr = loweri_dir_iop->link;
 } else {
 switch (mode & S_IFMT) {
 case S_IFDIR:
 loweri_iop_ptr = loweri_dir_iop->mkdir;
 break;
 case S_IFREG:
 loweri_iop_ptr = loweri_dir_iop->create;
 break;
 case S_IFLNK:
 loweri_iop_ptr = loweri_dir_iop->symlink;
 break;
 case S_IFSOCK:
 /* fall through */
 case S_IFIFO:
 loweri_iop_ptr = loweri_dir_iop->mknod;
 break;
 }
 }
 if (!loweri_iop_ptr) {
 err = -EINVAL;
 goto out_iput;
 }
 inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
 // [...]
out_iput:
 iput(inode);
 inode_unlock(loweri_dir);

 return err;
}

Code Review - The lock shiftfs bug

unlock is performed without the lock!

If a file operation is not
implemented, the pointer
is set to NULL

17

17/65GREHACK23

Code Review - Trigger the bug
 Find a filesystem (FS_USERNS_MOUNT) that does not

implement mkdir, create, symlink, link or mknod in its
inode_operations structure
 mqueue is a good candidate

// Extract from ipc/mqueue.c
static const struct inode_operations mqueue_dir_inode_operations = {

.lookup = simple_lookup,

.create = mqueue_create,

.unlink = mqueue_unlink,
};

18

18/65GREHACK23

user@user-VirtualBox:~$ cd /tmp
user@user-VirtualBox:/tmp$ unshare -U -r -i -m

root@user-VirtualBox:/tmp# mkdir d1 d2
root@user-VirtualBox:/tmp# mount -t mqueue none d1
root@user-VirtualBox:/tmp# mount -t shiftfs -o mark d1 d2
root@user-VirtualBox:/tmp# mkdir d2/foo
mkdir: cannot create directory ‘d2/foo’: Invalid argument
root@user-VirtualBox:/tmp# mkdir d2/foo

Code Review - Trigger the bug
 Trigger the bug

 The last “mkdir d2/foo” is now blocked…
 After several seconds

Code Review - Trigger the bug
[1208.882315] INFO: task mount:2539 blocked for more than 120 seconds.
[1208.885949] Tainted: G OE 5.13.0-28-generic #31-Ubuntu
[1208.887870] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[1208.888944] task:mount state:D stack: 0 pid: 2539 ppid: 1145 flags:0x00000004
[1208.890154] Call Trace:
[1208.890586] <TASK>
[1208.890887] __schedule+0x268/0x680
[1208.891379] schedule+0x4f/0xc0
[1208.891817] rwsem_down_read_slowpath+0x33a/0x3a0
[1208.892465] down_read+0x43/0x90
[1208.892912] walk_component+0x132/0x1b0
[1208.893440] ? path_init+0x2c1/0x3f0
[1208.893973] path_lookupat+0x6e/0x1c0
[1208.894505] filename_lookup+0xbf/0x1c0
[1208.894999] ? __check_object_size.part.0+0x128/0x150
[1208.895633] ? __check_object_size+0x1c/0x20
[1208.896172] ? strncpy_from_user+0x44/0x140
[1208.896693] ? __do_sys_getcwd+0x150/0x1f0
[1208.897216] user_path_at_empty+0x59/0x90
[1208.897715] do_readlinkat+0x5d/0x120
[1208.898218] __x64_sys_readlink+0x1e/0x30
[1208.898840] do_syscall_64+0x61/0xb0
[1208.899289] ? do_syscall_64+0x6e/0xb0
[1208.899766] ? exit_to_user_mode_prepare+0x37/0xb0
[1208.900366] ? syscall_exit_to_user_mode+0x27/0x50
[1208.900962] ? __x64_sys_close+0x11/0x40
[1208.901458] ? do_syscall_64+0x6e/0xb0
[1208.901971] ? __x64_sys_read+0x19/0x20
[1208.902545] ? do_syscall_64+0x6e/0xb0
[1208.903026] entry_SYSCALL_64_after_hwframe+0x44/0xae
[1208.903651] RIP: 0033:0x7feb9e52416b
[1208.904104] RSP: 002b:00007ffd0cfe12d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000059
[1208.905038] RAX: ffffffffffffffda RBX: 00007ffd0cfe1740 RCX: 00007feb9e52416b
[1208.905999] RDX: 00000000000003ff RSI: 00007ffd0cfe1750 RDI: 00007ffd0cfe1bb0
[1208.907142] RBP: 00007ffd0cfe1bb0 R08: 0000000000000000 R09: 0000412500000000
[1208.907985] R10: 00007feb9e5df040 R11: 0000000000000202 R12: 00007ffd0cfe1bbe
[1208.909123] R13: 00007ffd0cfe1ba0 R14: 00007ffd0cfe1750 R15: 00000000000003ff
[1208.910187] </TASK>

20

20/65GREHACK23

Exploitation
(How to get root with this bug?)

21

21/65GREHACK23

Exploitation - The objective
 Perform a Local Privilege Escalation (LPE) and get root

 Need to modify our process permissions to change the UID to 0
(root user)

 We do not need kernel code execution
 Having kernel read and write primitives is enough
 We also need a kernel pointer leak

 To bypass the KASLR
 To locate the data related to our process in the kernel memory

22

22/65GREHACK23

Exploitation - Side effect of the bug ?
 How to turn this locking bug into something useful ?
 The bug unlocks a directory lock

 What does it protect?
 What could happen if such a lock is wrongfully unlocked?

23

23/65GREHACK23

Exploitation - Example lock usage

file_1

file_2

directory

 When the content of the
directory is modified the
lock is taken
 Create a file, a folder, a link
 Remove a file

 This prevents concurrent
access and race conditions
during directory
modifications

Example of a mqueue FS

24

24/65GREHACK23

Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

i_count=N

Note: i_count is the inode usage count. When it hits zero, it is freed

25

25/65GREHACK23

Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

unlink file_1

inode_lock

 Process A starts to remove a file, the directory inode is locked

i_count=N

26

26/65GREHACK23

Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

open file_1
inode_lock

 At the same time, Process B wants to open it

As the lock is locked, it will wait

unlink file_1
i_count=N

27

27/65GREHACK23

Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process A removes the link and decrements the usage counter

Wait...

i_count=N-1

28

28/65GREHACK23

Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process A continues the unlink …

i_count=N-1file_1

Wait...

Parent link has been removed

29

29/65GREHACK23

Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

 Process A finishes the unlink

inode_unlock

file_1 i_count=N-1

open file_1

Wait...

30

30/65GREHACK23

Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process B is resumed

file_1 i_count=N-1

31

31/65GREHACK23

Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

open file_1

 Process B continues and returns an error

file_1 does not exist because it is not
linked to the directory!

file_1 i_count=N-1

Now can lock the directory

32

32/65GREHACK23

Exploitation - A reminder about the bug
 If we perform an action which is not implemented (like mkdir)

shiftfs will unlock the inode directory
 We can have several processes doing modifications in the same

directory at the same time

33

33/65GREHACK23

Exploitation - Example lock usage: removing a file

file_2

directory
Process A Process B

unlink file_1

 Remember when Process B was waiting for the lock...

i_count=Nfile_1
open file_1

Wait...

34

34/65GREHACK23

Exploitation - Example lock usage: removing a file

file_1

file_2

directory
Process A Process B

mkdir(directory/foo)
inode_unlock

unlink file_1
i_count=N

Process C

Process B starts doing things whereas Process A did not finished

open file_1

35

35/65GREHACK23

Exploitation - Taking advantage of the bug
 During an unlink, the i_count value is decremented

 The reference due to the link with the directory inode is removed
→ During 2 simultaneous unlinks the i_count could be
decremented twice

 We can reach zero while the system is still using the inode
 The inode will be freed and in an Use-After-Free state

36

36/65GREHACK23

Exploitation - How to get an UAF ?

Process A Process B

unlink file_1 unlink file_1

Process C

sync starts

mkdir

unblock waiting process

 Exploit idea

37

37/65GREHACK23

Exploitation - How to get an UAF ?

Process A Process B

unlink file_1 unlink file_1

Process C

mkdir

??????

 Reality...

race window is narrow

38

38/65GREHACK23

Exploitation - How to work on a race condition
 Work with a minimal setup

 Minimal but representative kernel in QEMU (same kernel configuration)
 Be able to build and to test quickly

 Some tips used
 Start to add a comfortable sleep to increase the race window.

 The longer it takes, the easier it is to win the race!
 Measure the timing to test your ideas using rdtsc()
 Assign a process to a specific CPU and set its task priority.

 Kernel scheduler exploitation tricks and technical
 Racing against the clock by Jann Horn (Google Project Zero)
 ExpRace Academic Paper (Yoochan Lee, Changwoo Min, Byoungyoung Lee)

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf

39

39/65GREHACK23

Exploitation - Increasing the race window
 By measuring the unlink race window, we observe that

registering some inotify events increases the duration of the
unlink operation!
 Without: mean 9258953 (on 10 000 tests)
 With: mean 17359443 (+ ~90%)

 Prior to triggering the race, another process registers an
inotify to receive notifications when a deletion occurs in the
folder
 Success rate ~ 1/100 attempts (only takes few seconds)

40

40/65GREHACK23

Exploitation - Some Race window statistics

The use of inotify increases the duration of the unlink race window!

41

41/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 1

file_1

directory
Process C

42

42/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 2

file_1

directory
Process C

usage counter is incremented

fd = open(file_1)

43

43/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

fd
fd2 = open(file_1)

usage counter is incremented

44

44/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

inotify: be notified on deletion

Waiting for events

fd
fd2

45

45/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Waiting for events

unlink unlink
fd
fd2

46

46/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Waiting for events

unlink unlink
Waiting for the lock

fd
fd2

47

47/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

Event IN_DELETE received

unlink unlink
Waiting for the lock

send event
wake

fd
fd2

48

48/65GREHACK23

Exploitation - Winning the race

Process A Process B

i_count = 3

file_1

directory
Process C

unlink unlink
waiting for the lock

mkdir(directory/foo) → unlock

fd
fd2

49

49/65GREHACK23

Process A Process B

i_count = 3

file_1

directory
Process C

unlink unlink wake B

mkdir(directory/foo) → unlock

fd
fd2

Exploitation - Winning the race

2 simultaneous unlinks → i_count will be decremented twice

50

50/65GREHACK23

Process A Process B

i_count = 1

file_1

directory
Process C

unlink unlink
fd
fd2

Exploitation - Winning the race

2 simultaneous unlinks → i_count will be decremented twice

51

51/65GREHACK23

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file

descriptors fd and fd2 linked
to file_1
 We can chose when file_1

will be deleted by closing fd

i_count = 1

file_1

52

52/65GREHACK23

i_count = 0

file_1

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file

descriptors fd and fd2 linked
to file_1
 We can chose when file_1

will be deleted by closing fd
close(fd)

53

53/65GREHACK23

i_count = 0

FREED

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file

descriptors fd and fd2 linked
to file_1
 We can chose when file_1

will be deleted by closing fd
close(fd)

54

54/65GREHACK23

i_count = 0

FREED

Process A

fd
fd2

Exploitation - Winning the race
 Process A still has file

descriptors fd and fd2 linked
to file_1
 We can chose when file_1

will be deleted by closing fd
 We can later access this file

using the remaining FD
read(fd2)

It is a Use-After-Free!

55

55/65GREHACK23

Exploitation - Exploiting the UAF
 We are now in a classic Use-After-Free (UAF) situation
 There's no time to go into further details in this presentation :(
 All the exploitation steps are as follows

 Win the race to have a UAF
 Reuse the freed inode with the controlled data

 (not simple because the inode is in a dedicated slab …)
 Create kernel read/write primitives
 Leak a kernel pointer
 Patch the process credentials to elevate to root privileges

56

56/65GREHACK23

Exploitation - Exploiting the UAF

Reuse with arbitrary data !

57

57/65GREHACK23

Exploitation - Testing on the up to date Ubuntu
 Trying the race on the up to date Ubuntu VM …
 It did not work as expected

 If the exploit loses the race, the CPU is stuck!
 Have only 1 try by CPU…

 Why this behavior? The shiftfs code did not change!
→ A patch in the kernel lock (commit d257cc8c)

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/impish/commit/kernel/locking/rwsem.c?id=5ef8752150e0ccd5da64d8c783ed2bc9814fd62a

58

58/65GREHACK23

Exploitation - I Gave up
 Winning a race with just one attempt by the CPU seems impossible... I gave up

59

59/65GREHACK23

Bug reported to Ubuntu
 Got the CVE-2023-2612 with the following patch

diff --git a/fs/shiftfs.c b/fs/shiftfs.c
index a76391c2246a..dab08fdd6638 100644
--- a/fs/shiftfs.c
+++ b/fs/shiftfs.c
@@ -409,6 +409,8 @@ static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 const struct inode_operations *loweri_dir_iop = loweri_dir->i_op;
 struct dentry *lowerd_link = NULL;

+ inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
+
 if (hardlink) {
 loweri_iop_ptr = loweri_dir_iop->link;
 } else {
@@ -434,8 +436,6 @@ static int shiftfs_create_object(struct inode *diri, struct dentry *dentry,
 goto out_iput;
 }

- inode_lock_nested(loweri_dir, I_MUTEX_PARENT);
-
 if (!hardlink) {
 inode = new_inode(dir_sb);
 if (!inode) {

https://ubuntu.com/security/CVE-2023-2612

60

60/65GREHACK23

While preparing Grehack slides…

61

61/65GREHACK23

IDEA - Improve the race success
 Using a process that uses inotify on the directory increases

the race window
 What if several processes do the same?

 We can register up to 128 processes to monitor deletions in the
directory

 limited by /proc/sys/fs/inotify/max_user_instances
 This strategy significantly increases the success rate (by more than 50%)

 The race condition can be won even with the kernel locking
patch

62

62/65GREHACK23

IDEA - Improve the race success

63

63/65GREHACK23

Conclusion
 A very interesting study, learned a lot about Linux VFS

internals
 Namespaces are a very interesting attack surface

 Ubuntu plans to restrict them for Ubuntu 23.10
 Do not give up too fast!

 Take a step back
 There is perhaps a solution

64

64/65GREHACK23

References
 Vincent Dehors shiftfs exploitation (CVE-2021-3492)
 VFS documentation

 Linux VFS documentation
 Exploit a race

 Racing against the clock by Jann Horn (Google Project Zero)
 ExpRace Academic Paper (Yoochan Lee, Changwoo Min,

Byoungyoung Lee)
 Slab exploitation (page-level heap fengshui)

 https://etenal.me/archives/1825 (Xiaochen Zou and Zhiyun Qian)

https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf
https://etenal.me/archives/1825

65

GREHACK23

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

