
1

Virtualization from an attacker point-of-view
An introduction to VM escapes

2

Thomas BOUZERAR
SECURITY EXPERT
@MajorTomSec

Who are we

Corentin BAYET
SECURITY EXPERT
@OnlyTheDuck

Reverse Engineering team

Offensive security

170 Experts

Pentest, reverse engineering, development,

incident response

45 reversers

Low level research, reverse engineering,

vulnerability research, exploit development, etc.

3

Introduction

4About this talk

What we WON’T talk about

Deep technical details on the implementation of virtualization

Exploitation of the bugs

What we WILL talk about

What is virtualization and how it works

The attack surface exposed by an hypervisor

History of bugs found in various components

5What is virtualization
A few definitions

❖ Virtualization creates the illusion of multiple (virtual)

machines on the same physical hardware.

❖ The “host” software is called the hypervisor

❖ Hyper-V, Xen, VirtualBox, VMware Workstation

❖ A Virtual Machine Monitor (VMM) is a part of the

hypervisor that manages CPU, memory, I/O devices

and interrupts

❖ The “guest“ is the operating system which is running

inside the virtual machine

https://multifunction.gr/en/virtualization/

6What is virtualization
Role and objectives of an hypervisor

CPU and memory virtualization
Execute the instructions of the virtual machine in its

own adress space.

Platform virtualization
Handle timers, interrupts, CPU traps…

IO devices virtualization
Emulate buses, graphics, network, disk...

Fidelity

Programs running in a virtual environment run identically

to running natively.

Performance

The majority of guest instructions are executed by the

hardware without the intervention of the VMM.

Safety

Resources are isolated between virtual machines and the

host remains isolated from the guests.

7What is virtualization
Role and objectives of an hypervisor

CPU and memory virtualization
Execute the instructions of the virtual machine in its

own adress space.

Platform virtualization
Handle timers, interrupts, CPU traps…

IO devices virtualization
Emulate buses, graphics, network, disk...

Fidelity

Programs running in a virtual environment run identically

to running natively.

Performance

The majority of guest instructions are executed by the

hardware without the intervention of the VMM.

Safety

Resources are isolated between virtual machines and the

host remains isolated from the guests.

8Why ?

❖ The goal for an attacker is to escape a virtual machine and gain control of the hypervisor

❖ VM escape (or VME)

❖ Very powerful primitive that can be critical for industries

❖ Think about cloud computing or hosting that use virtualization

❖ It's fun !

❖ By learning how virtualization works, you can learn how a computer actually works

❖ But only by analyzing and reversing software !

❖ … and reading intel’s manuals

❖ It’s complex

❖ Very low level

❖ Complex vulnerabilities and exploits

9

Virtualization basics

10Virtualization techniques
Full virtualization with binary translation

❖ First approach chosen by VMware for the first x86 full virtualization

❖ Unprivileged instructions are executed directly on the CPU

❖ Guest’s privileged instructions (I/O, interruptions…) are translated to

traps and handled by the VMM

❖ "Trap and emulate“

❖ Pros:

❖ Guest OS has no idea that it is being virtualized

❖ Good portability

❖ Cons:

❖ A lot of CPU overhead for privileged instructions

❖ Numerous traps

❖ Very complex VMM

Binary translation

11Virtualization techniques
Hardware assisted virtualization

❖ CPU vendors started developing hardware features for virtualization

❖ VT-X for Intel

❖ AMD-V for AMD

❖ Hardware features for helping emulate the guest hardware

❖ When the guest performs ”privileged operations”:

❖ can be directly handled by the hardware (passthrough)

❖ can give execution to the hypervisor (VMExit)

❖ Avoids trapping all the time

❖ Huge performance gain

❖ Not available on all CPUs !

❖ But available on all modern ones

❖ Most modern hypervisors require this feature

Hardware assisted

12Virtualization techniques
Paravirtualization

❖ Approach developed by Xen to have better performance

❖ An interface is developed on the guest to directly call the VMM and

do privileged operations

❖ “Hypercall“

❖ Implements page faults, context switch, I/O operations...

❖ Pros:

❖ Fast !

❖ Simple VMM

❖ Cons:

❖ Has to modify the guest

❖ Not portable: has to develop an interface for every guest’s kernel

Paravirtualization

13Virtualization techniques
Architecture comparaison

❖ Today, most hypervisors require hardware

assisted virtualization to run

❖ For CPU (VT-X, AMD-V)

❖ For MMU (SLAT)

❖ “Trap and emulate” still used for complex

privileged operations

❖ Using VMENTER, VMEXIT

❖ Paravirtualization when stealthy virtualization is

not necessary

❖ For costing operations

❖ For devices (network cards, …)

14Software architecture
Type of hypervisors

❖ “Bare metal” hypervisors (Type-1)

❖ Runs directly on top of the hardware

❖ Xen, Hyper-V, VMware ESXi

15Software architecture
Type of hypervisors

❖ “Bare metal” hypervisors (Type-1)

❖ Runs directly on top of the hardware

❖ Xen, Hyper-V, VMware ESXi

❖ “Hosted hypervisors” (Type-2)

❖ Software running in an operating system

❖ VMware Workstation, VirtualBox

16Software architecture
Type of hypervisors

❖ “Bare metal” hypervisors (Type-1)

❖ Runs directly on top of the hardware

❖ Xen, Hyper-V, VMware ESXi

❖ “Hosted hypervisors” (Type-2)

❖ Software running in an operating system

❖ VMware Workstation, VirtualBox

❖ Not that many differences in the end…

❖ Bare metal hypervisors have a base OS to handle applications

❖ Windows for Hyper-V

❖ Linux-like for VMware ESXi

17Software architecture
Hyper-v

18

Virtualization components
Summary of the attack surface

19Virtualization components
Attack surface overview

20MMU
VMs memory management

❖ Hypervisors need to manage the guest physical memory

❖ Shadow Pages Tables

❖ Mapping between Guest Virtual Addresses

and Host Physical Addresses

❖ Hardware acceleration brings Second

Level Address Translation

❖ Intel’s Extended Page Tables / AMD’s Nested Page Tables

21MMU
Second Level Address Translation (SLAT)

22Nested Virtualization
Running a VM in a VM

❖ Intel’s VMCS / AMD’s VMCB are the main data structures used by the hypervisors

❖ Hardware features need to be emulated

❖ VMX instructions emulation

❖ SLAT

❖ APIC virtualization

❖ VMCS shadowing

❖ Hypervisors all handle these differently

❖ Complexity increases → attack surface increases

23Buses
USB, PCI …

❖ A lot of hardware can be exposed via

PCI or USB interfaces

❖ Either emulated devices or passthrough

to hardware

❖ Very wide attack surface

❖ Protocols, emulated devices

❖ Very dependent of the configuration

24Paravirtualized devices
Network cards, printers, disks…

❖ Specific interfaces in the guest to communicate

with the hypervisor

❖ The hypervisor has a lot of specific code

to handle

❖ The OS embeds drivers for those devices

❖ Example devices that are often para-virtualized:

❖ Network cards, Disks, Audio queues...

25Graphics acceleration
SVGA, VMSVGA…

❖ Most hypervisors provide a way to accelerate graphics

❖ Allows to share the computing power of

the GPU between multiple guests

❖ Complex interfaces to handle 3D

graphics acceleration

❖ Examples:

❖ SVGA on VMWare

❖ VMSVGA on VirtualBox

26Guest additions
Virtualization tools

❖ Modern hypervisors provide tools to help the user

interact with the virtual machine

❖ Copy/Paste

❖ Drag and Drop

❖ Shared Folders

❖ Mostly installed on hosted hypervisors

❖ VirtualBox, VMware Workstation

❖ Used to be a very popular way to attack the hypervisor

❖ Not too complex, dangerous features, error prone

27Conclusion on virtualization
Attack surface

❖ CPU and MMU components represent a complex attack surface

❖ Both from the defender and attacker’s point-of-view

❖ Vulnerabilities in those components are very powerful

❖ Break the MMU or CPU isolation and you control the host

❖ But very complex and time-consuming

❖ It does NOT represents the main attack surface chosen by attackers

❖ Emulated and paravirtualized devices still represent the main attack surface

❖ A lot of code, less complex

❖ “Classic C bugs”: Buffer overflow, integer overflow, use-after-free…

❖ You don’t have to fully understand the complex virtualization mechanisms to find and exploit bugs

❖ But less style points scored when disclosing a bug !

28

Down the rabbit hole
History of virtualization bugs

29Attack surface
Hypervisor’s attack surface

30Network service bug
Overview

31Network service bug
CVE-2019-5544: Remote Code Execution in VMware ESXi

❖ CVE-2019-5544: RCE in service OpenSLP of ESXi

❖ Network service running on the host of ESXi

❖ Open-source implementation of the Service Location Protocol (SLP)

❖ Was reachable by default from the VM and on the administration interface

❖ Heap overflow exploited at the TianfuCup 2019

❖ Multiple bugs in the same service were found after the competition

❖ CVE-2020-3992: Use-After-Free

❖ CVE-2021-21974: Heap overflow

❖ Was actively exploited in the wild as a 1-day

❖ ESXiArgs: ransomware on ESXi

❖ Mostly exploited on the administration interface and not as VME

❖ Not a virtualization bug

❖ It's not the kind of bugs we are interested in !

32Attack surface
Hypervisor’s attack surface

33Attack surface
Hypervisor’s attack surface

34MMIO
Expected behavior

❖ Guest can trigger callbacks by writing in MMIO

❖ “Memory Mapped IO”

❖ Sometimes, guest can expect data to be written

through DMA

❖ Usually provides the DMA’s buffer address

35MMIO
Expected behavior

❖ Guest can trigger callbacks by writing in MMIO

❖ “Memory Mapped IO”

❖ Sometimes, guest can expect data to be written

through DMA

❖ Usually provides the DMA’s buffer address

❖ Host executes the callback based on which

address was written

36MMIO
Expected behavior

❖ Guest can trigger callbacks by writing in MMIO

❖ “Memory Mapped IO”

❖ Sometimes, guest can expect data to be written

through DMA

❖ Usually provides the DMA’s buffer address

❖ Host executes the callback based on which

address was written

❖ Host writes result in the provided DMA buffer

37MMIO
Expected behavior

❖ Guest can trigger callbacks by writing in MMIO

❖ “Memory Mapped IO”

❖ Sometimes, guest can expect data to be written

through DMA

❖ Usually provides the DMA’s buffer address

❖ Host executes the callback based on which

address was written

❖ Host writes result in the provided DMA buffer

❖ Host gives back execution to guest

❖ Guest can read result from DMA

38Recursive MMIO
A vulnerability pattern

❖ What if the guest provides a MMIO address to

the host ?

39Recursive MMIO
A vulnerability pattern

❖ What if the guest provides a MMIO address to

the host ?

❖ Host will write back in the MMIO…

40Recursive MMIO
A vulnerability pattern

❖ What if the guest provides a MMIO address to

the host ?

❖ Host will write back in the MMIO…

❖ Triggering another MMIO handler !

❖ Depending on the callback, some device

structures might be freed

41Recursive MMIO
A vulnerability pattern

❖ What if the guest provides a MMIO address to

the host ?

❖ Host will write back in the MMIO…

❖ Triggering another MMIO handler !

❖ Depending on the callback, some device

structures might be freed

❖ Execution is given back to the first MMIO handler…

42Recursive MMIO
A vulnerability pattern

❖ What if the guest provides a MMIO address to

the host ?

❖ Host will write back in the MMIO…

❖ Triggering another MMIO handler !

❖ Depending on the callback, some device

structures might be freed

❖ Execution is given back to the first MMIO handler…

❖ That might use freed objects !

❖ This behavior is not vulnerable by default

❖ But it is a vulnerability pattern !

43Recursive MMIO
CVE-2021-3750: VME in QEMU

❖ Recursive MMIO in emulation of USB EHCI

(2.0) in QEMU

❖ Set transfer buffer address of two first packets

in MMIO region

❖ Trigger send packets

❖ QEMU tries to map the buffers

❖ Fail on second buffer

❖ Error handling will write in MMIO

❖ Might reset the device

❖ Free objects still in use

https://qiuhao.org/Matryoshka_Trap.pdf

44Attack surface
Hypervisor’s attack surface

45Attack surface
Hypervisor’s attack surface

46Device Emulation bugs
CVE-2023-21987: stack buffer overflow in VirtualBox

Stack buffer overflow in TPM device emulator (VirtualBox)

47Attack surface
Hypervisor’s attack surface

48Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

Page 1 Page 2 Page 3 Page 4Destination buffer

49Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

Page 1 Page 2 Page 3 Page 4Destination buffer

Normal page

50Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

Page 1 Page 2 Page 3 Page 4Destination buffer

Normal page

51Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

Page 1 Page 2 Page 3 Page 4Destination buffer

MMIO (fails)

52Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

Page 1 Page 2 Page 3 Page 4Destination buffer

Filled with 0xFF

bytes

53Memory management bugs
CVE-2023-21988: Uninitialized memory read in VirtualBox

❖ Low level API PGMPhysRead is called when doing DMA from virtual devices

❖ Reads guest memory page by page, goes through MMIO handlers in case of MMIO addresses

❖ API returns early in case of MMIO handling failure but does not set the output buffer

❖ All 4 pages might be copied to guest memory…

❖ …leaking uninitialized data to guest !

Page 1 Page 2 Page 3 Page 4Destination buffer

Filled with 0xFF

bytes

Left uninitialized

54Device Emulation bugs
Escaping from VirtualBox at Pwn2Own Vancouver 2023

❖ Uninitialized memory bug can be used to leak either heap or stack data

❖ Can be used to break ASLR, leak eventual stack canaries…

❖ Chain with the TPM stack buffer overflow

❖ Overwrite the return address and build a ROP-chain

❖ Get code execution on host OS

❖ 100% reliable VM escape from VirtualBox!

55Attack surface
Hypervisor’s attack surface

56Nested Virtualization bugs
CVE-2021-29657: Arbitrary host MSR access in QEMU

❖ Nested virtualization is handled by QEMU

❖ When creating a nested VM, the hypervisor needs to check the values of the configuration structure

57Nested Virtualization bugs
CVE-2021-29657: Arbitrary host MSR access in QEMU

❖ Nested virtualization is handled by QEMU

❖ When creating a nested VM, the hypervisor needs to check the values of the configuration structure

❖ Double fetch in nested VMCB configuration

❖ First fetch validates the configuration

❖ Second fetch sets the actual configuration in the hypervisor

58Nested Virtualization bugs
CVE-2021-29657: Arbitrary host MSR access in QEMU

❖ Nested virtualization is handled by QEMU

❖ When creating a nested VM, the hypervisor needs to check the values of the configuration structure

❖ Double fetch in nested VMCB configuration

❖ First fetch validates the configuration

❖ Second fetch sets the actual configuration in the hypervisor

❖ Guest can change the data in between!

❖ Primitive gives access to host MSR registers through the guest

59Nested Virtualization bugs
CVE-2021-29657: Arbitrary host MSR access in QEMU

❖ Nested virtualization is handled by QEMU

❖ When creating a nested VM, the hypervisor needs to check the values of the configuration structure

❖ Double fetch in nested VMCB configuration

❖ First fetch validates the configuration

❖ Second fetch sets the actual configuration in the hypervisor

❖ Guest can change the data in between!

❖ Primitive gives access to host MSR registers through the guest

❖ Exploitable, but not trivial (found and exploited by Felix Wilhelm, Project Zero)

❖ Only affects hosts using AMD CPUs

60Attack surface
Hypervisor’s attack surface

61Attack surface
Hypervisor’s attack surface

62Hardware bugs ?
CPUs can’t be trusted

❖ CPUs are not immune to bugs

❖ Some of them can be exploited from the guest

❖ Can break host/guest or inter-vm isolation

❖ A few examples:

❖ Meltdown/Spectre

❖ CVE 2018-3646: L1 Terminal Fault (L1TF)

❖ Root causes are often due to performance features

❖ The fix often has a performance trade-off

63

Conclusion

64Conclusion

❖ Hypervisors expose a wide and complex attack surface

❖ Most disclosed vulnerabilities still reside in emulated / paravirtualized devices

❖ Simpler to approach for an attacker

❖ You don’t have to understand everything about virtualization to hunt bugs here

❖ But the context still exposes some very specific vulnerabilities

❖ Recursive MMIO (or DMA Reentrancy)

❖ Weird emulation bugs

❖ Hardware bugs

❖ This was a short introduction

❖ There is much more to say on the subject

65Conclusion

❖ Try it yourself !

❖ Fun and lucrative

❖ Microsoft Hyper-V’s bounty program awards

❖ Pwn2Own

66A few links

❖ https://docs.saferwall.com/blog/virtualization-internals-part-1-intro-to-virtualization

❖ https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtuali

zation.pdf

❖ https://qiuhao.org/Matryoshka_Trap.pdf

❖ https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf

❖ https://www.synacktiv.com/sites/default/files/2023-10/hexacon_breaking_out_of_the_box.pdf

❖ https://www.synacktiv.com/sites/default/files/2020-10/Speedpwning_VMware_Workstation.pdf

❖ https://github.com/shogunlab/awesome-hyper-v-exploitation

❖ https://www.keysight.com/blogs/tech/nwvs/2023/02/24/remote-code-execution-with-esxi-cve-2021-

21974-vmware-esxi-heap-overflow

❖ https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html

https://docs.saferwall.com/blog/virtualization-internals-part-1-intro-to-virtualization
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://qiuhao.org/Matryoshka_Trap.pdf
https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf
https://www.synacktiv.com/sites/default/files/2020-10/Speedpwning_VMware_Workstation.pdf
https://www.synacktiv.com/sites/default/files/2020-10/Speedpwning_VMware_Workstation.pdf
https://github.com/shogunlab/awesome-hyper-v-exploitation
https://www.keysight.com/blogs/tech/nwvs/2023/02/24/remote-code-execution-with-esxi-cve-2021-21974-vmware-esxi-heap-overflow
https://www.keysight.com/blogs/tech/nwvs/2023/02/24/remote-code-execution-with-esxi-cve-2021-21974-vmware-esxi-heap-overflow
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html

67

www.linkedin.com/company/synacktiv

www.twitter.com/synacktiv

www.synacktiv.com

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57
	Diapositive 58
	Diapositive 59
	Diapositive 60
	Diapositive 61
	Diapositive 62
	Diapositive 63
	Diapositive 64
	Diapositive 65
	Diapositive 66
	Diapositive 67

