
1

Finding and exploiting an old XNU logic bug
Hexacon 2023

2

2

 Eloi Benoist-Vanderbeken
 @elvanderb
 Reverse Engineering team tech lead
 iOS / macOS

 Past presentations
 An Apple a day keeps the exploiter

away (SSTIC 2022)
 macOS: how to gain root with CVE-

2018-4193 in < 10s (OffensiveCon
2019)

 Heapple Pie: macOS and iOS default
heap (Sthack 2018)

Whoami
 Synacktiv

 Hexacon organisers!
 Offensive security
 140 experts
 Pentest, Reverse Engineering,

Development, Incident Response

 Reverse Engineering team
 47 reversers
 Low level researches, reverse

engineering, vulnerability research,
exploit development, etc.

3

3

Pwn2own 2023
 New target !

 LPE on a MacBook Pro
 MUST use a kernel bug

 With an M-series SOC
 PAC!

 $40,000
 Not much but better than nothing :)

 Time to find some bugs…

4

4

Which bugs?
 No more cheap bugs!

 No iOS bug
 No PAC bypass
 No ninja exploit techniques

 Actually not that easy…
 No memory corruption

 Or very specific ones
 Not a lot of surface

 Other constraints…
 Want to work on my M1

MacBook Air
 No company tools 😢

 IDA > Ghidra…
 No KEXTs

5

5

Which bugs?
 No more cheap bugs!

 No iOS bug
 No PAC bypass
 No ninja exploit techniques

 Actually not that easy…
 No memory corruption

 Or very specific ones
 Not a lot of surface

 Other constraints…
 Only during my free time
 Don’t have company tools

 IDA > Ghidra…
 No KEXTs

6

6

File system
 Large non iOS attack surface

 Can mount / unmount
things on macOS

 SUID binaries
 Almost no sandbox

 Source of logic bugs/exploits
 SUID binaries
 Turns UAF into arb. file write
 etc.

 Lots of code in XNU
 No need to get our hand

dirty with Ghidra

7

7

vnodes
 Each file/directory has a

vnode
 Path ↔ vnode is cached

 Lazily freed
 Not that easy to exploit UAF
 Needs to be careful

 vnode_getwith{ref/vid}
 Unix permissions are cached

 Saves CPU

 Lots of corner cases
 But public API
 See vnode.h

 Found some bugs…
 Not that easy to exploit :’(

8

8

vnodes
 Each file/directory has a

vnode
 Path ↔ vnode is cached

 Lazily freed
 Not that easy to exploit UAF
 Needs to be careful

 vnode_getwith{ref/vid}
 Unix permissions are cached

 Saves CPU

 Lots of corner cases
 But public API
 See vnode.h

 Found some bugs…
 Not that easy to exploit :’(

9

9

10 days before the dead line…

10

10

2 days after saying that I gave up…

11

11

12

12

Let’s have a look to /dev/fd

13

13

man fd

14

14

Ugly hack
 Saw the code during my review
 Ugly hack in open

 /dev/fd open func returns ENODEV…
 And set bsdthread_info→uu_dupfd = vnode→fd_fd

 … which is handled by the open syscall…
 … by calling dupfdopen(bsdthread_info→uu_dupfd)

 Fun but not interesting…
 Almost exact same thing than dup...
 Used to use the same /dev/fd vnodes for every process

15

15

Sometimes all you need is vnode
 This ugly hack doesn’t always work

 Other syscalls manipulate paths
 What happens when you call chmod(“/dev/fd/3”, 777)?

1. get “/dev/fd/3” vnode
 /dev/fd special vnode
 Mostly only hold the fd number

2. check if the chmod operation is authorized
 Call the MAC hooks
 Call vnode_getattr to get the vnode mode bits / owner etc.

3. change the mode bits
 Call vnode_setattr on the vnode

16

16

Got it?
 vnode_getattr / vnode_setattr

 Call the /dev/fd functions fdesc_getattr / fdesc_setattr
 Lookup the fd in the current context with fp_lookup
 Call vnode_getattr / vnode_setattr on the underlying vnode

 Obvious TOCTOU
 You can change the fd between the calls

 Just close the fd and reopen anything
 Can be used to chmod all the files we can get a fd on

 Trivial to get root (just modify a root file and make it suid)
 Less than 1 day to find an exploit the vulnerability

17

17

Got it?
 vnode_getattr / vnode_setattr

 Call the /dev/fd functions fdesc_getattr / fdesc_setattr
 Lookup the fd in the current context with fp_lookup
 Call vnode_getattr / vnode_setattr on the underlying vnode

 Obvious TOCTOU
 You can change the fd between the calls

 Just close the fd and reopen anything
 Can be used to chmod all the files we can get a fd on

 Trivial to get root (just modify a root file and make it suid)
 Less than 1 day to find and exploit the vulnerability

18

18

Making animated ASCII arts is hard

19

19

Can we do more?
 root is great but SIP/TCC is still there

 Cannot read users documents
 Cannot load kexts
 Cannot modify all the files

 Can we bypass SIP with the same bug?

20

20

Can we do more?
 root is great but SIP/TCC is still there

 Cannot read users documents
 Cannot load arbitrary kexts
 Cannot modify all the files

 Can we bypass SIP with the same bug?

21

21

SIP
 Protects system files against arbitrary modifications

 Among other things
 Used to enforce other security mechanisms

 Notably the kext related files
 restrictions / MDM configuration / user consent / etc.

 Protected with the “restricted” flag

% ls -aOl /var/db/SystemPolicyConfiguration/KextPolicy
-rw------- 1 root wheel restricted 4096 Nov 15 2022 KextPolicy

22

22

Ooops
 Remember few slides back…

 MAC hooks are called with the /dev/fd vnode
 The sandbox only sees this vnode

 The vulnerability
 SIP has no way to know what’s the “real” underlying vnode
 It could call vnode_getattr to check the restricted flag

 But it would still be exploitable with a race
 But it actually don’t even bother!

 Path based rule?

23

23

31337 exploit
 Open a file read only
 Change the flags on the /dev/fd/XXX alias
 …
 Profit

24

24

31337 exploit
 Open a file read only
 Change the flags on the /dev/fd/XXX alias
 …
 Profit

function exploit() {
 integer i
 {
 exec {i}<"$1"
 chflags norestricted "/dev/fd/$i"
 } always { exec {i}>&- }
}

25

25

But how to get kernel code exec?
 Easy to bypass user consent

 Just edit the KextPolicy database
 Easy to bypass deprecated function detection

 Just rm KextClassification.plist
 Not that easy to load unsigned kexts

 It may be possible, I didn’t spent too much time on it
 Ping me if you know how to do it :)

 Sufficient to load a correctly signed kext
 Don’t forget to kill syspolicyd

26

26

How has it been fixed?
 Apple just added some checks in the /dev/fd code

 Get the underlying vnode
 Re-do the checks done in chmod/chflags

 Fixed in macOS 12.6.6 and iOS 16.5
 CVE-2023-32413
 iOS shouldn’t be impacted

 /dev/fd is not even compiled in the release kernels…
 … but it was in the accidentally released 15.x dev kernels

 Please Apple, release more of them

27

27

Conclusion
 No /dev/fd on iOS

 Even if…
 Sandbox, no SUID, mandatory code signature, no interpreter, etc…

 Still a lot easier to get root on macOS
 Even with PAC

 Logic bugs won’t save us all
 But “classic” memory corruptions neither
 Probably why we see so much reports in virtual memory

 But for how long…

28

www.linkedin.com/company/synacktiv

www.twitter.com/synacktiv

www.synacktiv.com

https://www.linkedin.com/company/synacktiv
https://www.twitter.com/synacktiv
https://www.synacktiv.com/

