= SYN

Laravel - Deep dive in laravel encryption

Rémi Matasse & Mickaél Benassouli
Grehack - 2024

Introduction 5 SYNACKTIV

Who are we?
= Rémi (@ _remsio_) and Micka (@Kainx42), security experts at Synacktiv.
= Company specialized in offensive security: penetration testing, reverse engineering,
trainings, etc.

= Around 180 experts over 5 offices in France (Paris, Lyon, Toulouse, Rennes, Lille).

= Let's work together!

Table of content #SYNACKTIV

= |ntroduction to Laravel

= Encryption mechanism
= Laravel exposure to unserialize attacks
= Quick presentation of a concrete APP_KEY usage
= Vulnerability research on Laravel decrypt attacks
= research results
= 3 vulnerabilities on big Laravel projects :)
= exploitation demos with our new tool
= Analysis of the APP_KEY quality in publicly accessible Laravel applications
= Analysis of previous attacks detected in the wild

= How to find valid APP_KEY s

= Result of our research on Laravel public exposure on this kind of leak

= SYNACKTIV

Introduction to Laravel

Introduction to laravel £ SYNACKTIV

= Laravel is a free, open-source PHP framework designed for web application
development. It follows the Model-View-Controller (MVC) architectural pattern,

promoting organized and maintainable code.

= [aravel is popular for designing web applications such as e-commerce platforms,
social networking platforms, APIs (Application Programming Interfaces), and Content
Management Systems (CMS).

= Laravel applications often handle critical data, making them attractive targets for
attackers.

= Laravel is utilized by 1,235,487 live and historical websites, according to BuiltWith.

https:/trends.builtwith.com/framework/Laravel

https://trends.builtwith.com/framework/Laravel

Encrypt function usage

@ Laravel

Encrypt and Decrypt

Laravel simplifies encryption through the encrypt function
= Based on OpenSSL library to achieve a high-security standard.

This function is loaded from the package Illuminate\Encryption

// Encrypting data

$originalData = 'Hello, world!';
$encryptedData = encrypt($originalData);

encrypt and its complementary function decrypt are loaded by default

= use Illuminate\Encryption not required in a Laravel project

Often used as an integrity validator to give or store sensitive data

= SYNACKTIV

Encrypted value format HSYNACKTIV

= Baseb4 string containing 4 values used by AES-CBC-256, other algorithms can be used but this is this
one by default

= v : Initialization vector, generated randomly each time

= value : the value is ciphered from iv + APP_KEY
= mac : a validation mac to prevent padding oracle attacks

= tag: used in other modes such as GCM

$ echo "eyJpdiI6IkJIsYXJIrVH1lpcmOXT3pNbEIXcO01neFE9OPSISINZhbHV1IjoicnBXNWEYyROdrN2
hER1JSOFZDMUpuU2NsdOhkRDIXxWUJ2aWhTTVRmMRG9aaz0iLCJtYWMi0iJkMTk5ZDg3NWYONJEOODJ
iNDcwZWMwWNDKYMWRKYTM20DIyODM3MWEZzYmJ jN2VjZGVmMzE4NmVjMDFjMDUYYjYOIiwidGFnIjoi
Ine=" | base64 -d | jq
{

"iv'": "BlarkTyirm10zM1B1sMgxQ=="",

"value": "rpwW5a2GGk7hDFR18VC1JnSc lwHdD21YBvihSMTfDozk=",

"mac": "d199d875f461482b470ec04921dda368228371a3bbc7ecdef3186ec01c052b64",

Iltagll : mni

}

GreHack - Deep dive in laravel encryption [

Laravel exposure to unserialize attacks HSYNACKTIV

= Laravel contains a lot of gadgets that were never patched
= phpggc is a tool created by Charles Fol to craft unserialize payload

= This tool also contains the script test-gc-compatibility.py designed to test the
usability of payloads on a given library

user@poc-laravel:~/Desktop/tool/phpggc$ docker run --entrypoint './test-gc-compatibility.py' phpggc laravel/laravel:10.3.3,9.5.2,8.6.11,7.30.1,6.20.1 Laravel/RCE4 Laravel/RCE8 Laravel/RCE9
Running on PHP version PHP 8.1.3@ (cli) (built: Oct 28 2024 22:05:20) (NTS).
Testing 5 versions for laravel/laravel against 9 gadget chains.

laravel/laravel | Package | Laravel/RCE4 | Laravel/RCE8 | Laravel/RCE9 | Laravel/RCE10 | Laravel/RCE13 | Laravel/RCE15 | Laravel/RCE17 | Laravel/RCE19 | Laravel/RCE20

16.3.3 0K 0K 0K 0K 0K 0K 0K 0K 0K 0K
9.5.2 0K 0K 0K 0K 0K 0K 0K 0K KO 0K
8.6.11 0K 0K 0K 0K 0K 0K 0K KO KO 0K
7.30.1 0K 0K 0K 0K 0K 0K 0K KO KO 0K
6.20.1 0K 0K KO 0K 0K 0K 0K KO KO 0K

= The core developpers of Laravel were contacted several times to point out this point,
however..

https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc/blob/master/test-gc-compatibility.py

Laravel exposure to unserialize attacks HSYNACKTIV

GreHack - Deep dive in laravel encryption 9

Decrypt function £ SYNACKTIV

EE?Larqvel

Encrypt and Decrypt

namespace Illuminate\Encryption;
public function decrypt($payload, $unserialize = true)

{ $payload = $this->getIsonPayload($payload);
$iv = base64_decode($payload['iv']);
$decrypted = \openssl_decrypt($payload['value'], $this->cipher, $this->key, 0, $iv);
[...]

, return $unserialize ? unserialize($decrypted) : $decrypted;

= By default the parameter $unserialize is set to true
= The value of $this->key isthe APP_KEY of the Laravel application

= Therefore : controlling a data passed to decrypt + getting APP_KEY = RCE

GreHack - Deep dive in laravel encryption 10

What about the APP_KEY HSYNACKTIV

~

~

Y
- KE
A Pi//(
/

=

y
= Getting the APP_KEY is the primary requirement to control decryption

= Without this key, any attempt to decrypt data will fail

= Laravel encryption is used as an Integrity Check which Ensures the application data
remains unchanged during storage and transport

n

Storage Locations for APP_KEY HSYNACKTIV

Where is APP_KEY stored?

1. .env File

= Located in the application’s root directory

= Commonly accessed via the APP_KEY or APP_PREVIOUS_KEYS parameters

= Security: Important to restrict access to this file as it contains sensitive environment configurations

2. config/app.php Configuration

= Laravel configuration file which loads .env variables
= Keyis defined by 'key' => env('APP_KEY')

= By default, Laravel dynamically references APP_KEY from .env , ensuring environment-specific key loading

12

Key Rotation £ SYNACKTIV

= APP_PREVIOUS_KEYS: Is an array containing previous APP_KEY values
= Purpose: Facilitates key rotation without causing decryption failures on legacy data.

= However..

13

Key Rotation

GreHack - Deep dive in laravel encryption

APP-PREVIOUSSKEYS
AHE IISEII 10 IlEl}IIYPT

L".r

= SYNACKTIV

14

Securing the APP_KEY #SYNACKTIV

= Security Best Practices:
= Store .env in restricted directories.

= Avoid exposing .env in version control systems.

= Rotate APP_KEY and use APP_PREVIOUS_KEYS as needed.

= APP_KEY Is foundational to data confidentiality within Laravel applications, securing
encrypted and decrypted data.

Attack surface analysis HSYNACKTIV

In the past : Cookie Exploitation - Before Laravel 5.6.30, session cookies were serialized, leaving them open to RCE.
CVE-2018-15133

Now : Insecure Decryption Calls :

= Risk: Many Laravel applications use decrypt() without setting unserialize=false .

= Example: The laravel-opcache package uses Crypt::decrypt() with default settings, allowing attacker-
controlled data to be decrypted and deserialized.

Laravel encrypted components (blogpost from Timo Miiller) :

= Cookies
= Queues

= Signed Urls

https:/mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-leaked-app_keys-and-
queues/

GreHack - Deep dive in laravel encryption 16

https://github.com/aljavier/exploit_laravel_cve-2018-15133
https://mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-leaked-app_keys-and-queues/
https://mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-leaked-app_keys-and-queues/

Laravel Crypto Killer

Laravel ciphers

= A tool we developed to manipulate/exploit

= 3 modes are available at the moment

= encrypt
Used to mimic Illuminate\Encryption encrypt function

Can be used with the mode --session_cookie to exploit SESSION_DRIVER=cookie

= decrypt

Used to mimic Illuminate\Encryption decrypt function

= bruteforce
Used to perform a scaled bruteforced on one or more Laravel ciphers

GreHack - Deep dive in laravel encryption

= SYNACKTIV

17

Laravel Crypto Killer (Demo) ESYNACKTIV

user@debian:~/Bureau/tools/laravel-crypto-killer$./laravel crypto killer.py -h
usage: laravel crypto killer.py [-h] {encrypt,decrypt,bruteforce}

(00) () (o) (0)

| N A (Y G O N P S N PAD Y4 N A R N

|] . VAU O I O VAN | [| _C"__C)y CC'"_ N /7N P (R N I I I (AR

S I CC T CCHINAC i < LT OTOT1CO) < PN

< N () N N N () = /() AV I VR W AR N (R N G U VN
()T 1|

It can also be used to decrypt any data encrypted via encrypt() or encryptString().

The tool requires a valid APP_KEY to be used, you can also try to bruteforce them if you think there is a potential key reuse from
a public project for example.

Authors of the tool : @ remsio , @Kainx42

options:
-h, --help show this help message and exit

subcommands:
You can use the option -h on each subcommand to get more info

{encrypt,decrypt,bruteforce}
encrypt Encrypt mode

decrypt Decrypt mode
bruteforce Bruteforce potential values of APP KEY. By default, all the values from the folder wordlists will be loaded.

18

GreHack - Deep dive in laravel encryption

= SYNACKTIV

Vulnerability research on this type of pattern

Vulnerable patterns

= |n AuthServiceProvider.php :

= SYNACKTIV

Passport::withCookieSerialization();

= Revive the vulnerability CVE-2018-15133

= On default Laravel encryption via decrypt or Crypt::decrypt

= (Call to unserialize by default

= Stores the session in the cookie via SESSION DRIVER=cookie
= was by default until Laravel 6.12.0 during 2020

GreHack - Deep dive in laravel encryption

20

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15133
https://github.com/laravel/laravel/commit/eca7bc7d66cef63500a62e8deaa3fce1772f1641

Vulnerable patterns - vulnerable products

= Snipe-IT CVE-2024-48987 - 11.1k stars on Github

= |In AuthServiceProvider.php : Passport::withCookieSerialization();

= Revive the vulnerability CVE-2018-15133

= |nvoice Ninja CVE-2024-XXXXX - 8.2k stars on Github
= On default Laravel encryption via decrypt or Crypt::decrypt

= Call to unserialize by default

= Crater CVE-2024-XXXX - 7.8k stars on Github (Fork : /nvoiceshelf)

= Stores the session in the cookie via SESSION DRIVER=cookie

= was by default until Laravel 6.12.0 during 2020

= SYNACKTIV

21

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15133
https://github.com/laravel/laravel/commit/eca7bc7d66cef63500a62e8deaa3fce1772f1641

Snipe-IT

[0 2 files changed +1-3 lines changed

~ app/Http/Middleware/EncryptCookies.php [EJ '%'

28
21
22
23

24

28
21
22

23
24

@@ -28,5 +20,5 @@ class EncryptCookies extends BaseEncrypter

*
* f@var bool

Sl,l'

protected static $serlalize = true;

protected static $serialize = false;

~ app/Providers/AuthServiceProvider.php [EJ 3

B7
BB
89

91
92
93

95
96
a7

87
B8
8o

98
91
92

93
94
95

@@ -87,11 +87,9 @@ public function boot()

1);

$this-»registerPelicies();

//Passport: routes(); f/this is no longer required im newer passport versions

Passport:
Passport:
Passport:

Passport:

TEL:

GreHack - Deep dive in laravel encryption

:tokensExpireIn{Carbon: :now()->addYears(config(' passport.expiration_years'))});
crefreshTokensExpireIn{Carbon: ;now()->addYears{config(' passport.expiration_years'}});
rpersonalAccessTokensExpireIn{Carbon: tnow()->addYears(config(" passport.expiration_years')));

:withCookieSerialization();

= SYNACKTIV

22

Invoice Ninja

[D 3files changed +44-29 lines changed

W

144
145
146
147

148
149

158
151
152
153
154
155
156

157
158

159
168

routes/client.php [53 :

144
145
146

147
148

149
158

151
152
153
154
155
156
157

158
159

168

@@ -144,20 +144,28 @@
Route::get('unsubscribe/{entity}/{invitation_key}', [App‘\Http\ControllersyClientPortal\InvitationController::class, 'unsubscribe'])-»name('unsubscribe");

2H

Route::get('route/{hash}', function (%hash) {

ff Route::get{'route/{hash}', function (EThash) {

froute = "/";

ff froute = '/";

try {

$route = decrypt(%hash);
}
catch (\Exception %e) {

abort{4e4);

I try {

i $route = decrypt($hash);
i H

I catch (\Exception $e) {

I abort({424);

return redirect($route);

I return redirect($route);

})-smiddleware(throttle: 484");
[F)-smiddleware("throttle:484");

GreHack - Deep dive in laravel encryption

SYNACKTIV

23

Crater --> InvoiceShelf

[T 1 file changed +1-1 lineschanged

W

15
16
17
18
19
28
21
22
23
24
25
26
27
28

.Env.example [EJ 'i'

15
16
17
18
19
20
21
22
23
24
25
26
27

28

APP_KEY=basebtd:kgk/4DWIvEVy 7aEvet5FPpSuncPIGe / soBHamvolitie=

APP_DEBUG=true
APP_NAME="InvoiceShelf"
APP_LOG_LEVEL=debug
APP_TIMEZONE=UTC

APP_URL=http://invoiceshelf.test

APP_LOCALE=en
APP_FALLBACK_LOCALE=en
APP_FAKER_LOCALE=en_US

APP_MATNTENANCE_DRIVER=file
APP_MATNTENANCE_STORE=database

BCRYPT_ROUNDS=12

DB_CONNECTION=sqlite
DB_HOST=

DB_PORT=
DB_DATABASE=
DB_USERNAME=

DB_PASSWORD=

BROADCAST _CONNECTION=log
CACHE_STORE=file

QUEUE_CONNECTION=sync

- SES5I0N_DRIVER=cookie

+ SESSION_DRIVER=file

GreHack - Deep dive in laravel encryption

Does the vulnerability require the attack
to know the APP_KEY environment variable?

= SYNACKTIV

24

= SYNACKTIV

Analysis of the APP_KEY quality in publicly
accessible Laravel applications

25

Previous attack based on an APP_KEY BSYNACKTIV
leakage : Androxghost

Attack performed during january 2024

The Malware scans the internet for Laravel applications.

Upon finding a Laravel application, it checks for exposed .env files to steal credentials and API keys.

It may also send a POST request with the variable ox[] to trigger an error, aiming to identify sites
with debug mode enabled, which can also expose credentials and API keys.

If it successfully accesses the application key, it attempts to exploit a known Remote Code
Execution (RCE) vulnerability in Laravel v5.2 using the XSRF-TOKEN cookie.

Blogpost from Stephen Rees-Carter

https:/securinglaravel.com/laravel-security-androxghOst-malware/

26

https://securinglaravel.com/laravel-security-androxgh0st-malware/

Use for attacker ESYNACKTIV

= Legitimate Data Serialized with APP_KEY
= Attackers with a known APP_KEY can bypass security checks, embedding payloads in
serialized data that Laravel may deserialize, potentially executing malicious code.

= Serialized PHP objects with gadget chains (e.g., PHPGGC) can trigger arbitrary commands
without detection by WAFs.

= Minimal Logging in Default Configurations:
= Deserialization and command execution may leave no trace in logs, unlike standard POST
requests from typical web shells.

GreHack - Deep dive in laravel encryption 21

Use for attacker

GreHack - Deep dive in laravel encryption

VISIBLEATTACKS

BASED ON DECRYPT)

SNEAKY ATTACKS
BASED ON DECRYPT

= SYNACKTIV

28

Analysis performed by Synacktiv HSYNACKTIV

= Objective:
1. Assess the robustness of APP_KEY values used in publicly available Laravel applications, identifying potential

vulnerabilities in keys that are too weak or common

2. Make a good Wordlist of APP_KEY for offline bruteforce

= Tactics:
1. Exfiltrate Serialized Objects: Collecting serialized objects from exposed Laravel applications

2. Prioritizing Common Targets: Targeting weak or common APP_KEY values

o
IS'JUST DEFAULT APPKEY

GreHack - Deep dive in laravel encryption 29

Find Token in the wild ESYNACKTIV

= Starting by exfiltrate all Laravel ciphered object foundable on the internet

= Leveraging Shodan for Discovery, as it indexes publicly exposed server information,
including Laravel's XSRF-TOKEN and other cookies.

= Simple Pattern Matching for collecting serialized data :
= Set-Cookie: XSRF-TOKEN=

= http.title:"Whoops! There was an error" http.status:500

GreHack - Deep dive in laravel encryption 30

Let's GO Shodan

“‘ SHODAN Explore Downloads Pricing &2 Set-Cookie: XSRF-COOKIE=

TOTAL R

679,866

United States 189,259

Germany 65,561
RETED] 48,734
singapore 44,650

India 31,679

”394‘636
189,511
11,814
11,244

3,678

DigitalOcean, LLC

Amazon Technologies Inc.
Amazon.com, Inc.

Amazon Data Services Japan

Amazon Data Services NoVa

nginx
Apache httpd

Microsoft IS httpd

i View Report

& Download R ts i Historical Trend [W

: SYNACKTIV

v on Map

Product Spotlight: we've Launched a new API for Fast Vulnerability Lookups. Check out

[Jailhouse Cannabis -Atlanta
19283]
R

jailnouse-atianta kusheart us

EE United States, Madison Heights

Laravel
16¢ 213

21

= Germany, Nirmberg

E

ELITE SYSTEM

159 0

- Singapore, Singapore

E &

&) SSL Certificate

ssued By : nginx

HTTP/1.1 288 0K

R11
t
Let's Encrypt
ssued To:
jailhouse-atlanta kushcart.u

TLSv11, TLSv1.2

& SSL Certificate HTTP/1.1 200 OK
ssued By hu, 1 2024 07:33:33

LhHeTNzU213NXIKbW9aR 1GU3

:
Let's Encrypt

Issued To:

cabaces.en NNOVA.Com

Supported SSL Versions.

TLSv1, TLSv1.1, TLSv1.2

Diiffie-Hellman Fingerprint:
RFC3526/0akley Group 14

&) SSL Certificate
ssued By 1 2624 87:33:18
c Name: : Aps 4.29 (Ubuntu)

R3
Organizat
Let's Encrypt
Issued To:
*bwsi.com.ph
Supported S5L Versions

TLSv1.2, TLSVL3

Diffie-Hellman Fingerprint:
RFC3526/0akley Group 14

Find APP_KEY in the wild BOYNALKTIV

= A significant number are vulnerable to brute-force attacks targeting APP_KEY

GitHub Dork

Google Dork

Known APP_KEY
Repository

Leaked

.env Files

app_key=base64: AND NOT "app_key=base64:*" AND NOT "app_key=base64:.*"

ext:env intext:APP_ENV= | intext:APP_DEBUG= | intext:APP_KEY=

BadSecrets (not fully relevant for our case).

Smart person would try to grab .env files from our nearly 700k IPs. But of course, we
don't do that here :)

32

Find APP_KEY in the wild BOYNACKTIV

= Many .env files are accessible across the web, exposing sensitive environment configurations that
should remain private

= Some .env files still leak through Google and GitHub, often due to accidental publication.

= Global scanning with wordlists: Attackers use wordlists to locate .env files containing critical secrets
like APP_KEY s.

.env
.env.dev
.env.prod
.env.backup
.env.example
.env. local

GreHack - Deep dive in laravel encryption 33

The Danger of Default APP_KEY ESYNACKTIV

= Default APP_KEY s in production environments make applications easy targets

= Attackers can leverage Laravel encrypted cookies like XSRF-TOKEN to:

= Reverse-engineer the key
= (Gain access to sensitive data

= Compromise the system

= Laravel crypto killer was used to bruteforce

GreHack - Deep dive in laravel encryption 34

Laravel Cryto Killer - bruteforce #SYNACKTIV

= Our tool Laravel Crypto Killer was used to brute-force APP_KEY
= The option --cipher_file can be used to select a list of Laravel ciphered values

= The brute force will be multi threaded to gain sometime, however it is not fully

optimized yet
= the option --threads can be used to define more threads

= The brute force takes us several hours anyway in our case

35

GreHack - Deep dive in laravel encryption

Laravel Cryto Killer - bruteforce #SYNACKTIV

(env) user@poc-laravel:~/Desktop/local-tool/laravel-crypto-killer$ python3 laravel crypto killer.py bruteforce -t 3 --cipher file cipherlist
s/tokens_output.txt
[*] The option --key file was not defined, using files from the folder wordlists...
0% | 0/580461 [00:00<?, ?it/s]
[+] It is your lucky day! A key was identified!
Cipher : eyJpdiI6IkhoalllQzNadmdNdkdIcmoORXpMR1EOPSIsINZhbHV1IjoiZmEyV1IpVnBGMkVYckoxQlVnZFM4ckNjd1lZXdHgOWTI3ZFEwh1g3TkdWN205MmQObjR2aXdTLOS
CU3FQVVK2UStGYWVrc29mOEVOOXVYUS83bTQxWGowal5VanF3Z1ovRFRCd2ZFaGMrNzdWUKNxbFZhbndFcm82RWNiUKhsK3kiLCItYWMi0iI1ZGRKY2VhZjU4YzMwZTFIMTViN2Z1ZDF
KZjUIM2EYyMjk2YmY3YTM2YWEXM]j ZKNmZ1MzZ1ZDdkZmQOMTFKMGQzIiwidGFnIjoiIn0%3D
Key : SomeRandomString0f32CharsExactly
[*] Unciphered value
2b0b05fa23ce769182efd20cf7c1ldf9ae7189729 |dWId305Sa3CNrTgxoH53QYh00k1lwQRowbFOsyvvbd
[+] It is your lucky day! A key was identified!
Cipher : eyJpdiI6IKRtN1VtdXhBYm94UXdTM1BzOXBDcGcOPSIsInZhbHV1Ijoidkp4TloxbUQxaEI2d1drNUI2MGpSK2VXd2hVMLhwYzRCSGhWNC85bGIFNUt5SmpOWF1Hc1FwRKkx
sQ1Z151Jjb3dsQkw3YzNjMzBaczBIVGK3RERQUGS5pNGZFZOMySUg3UUFVMiswR1BxdjZnWnV6UzJIxQTI2b0Zpa2RqT1Q0dHQiLCItYWMi0iJiNmFmN2Q4MDQ10TYOZjB1ZDBhNDM3MTQ
yOGIXNWM4MDRhY2MIMTN1M2NiNzA4MTM5M] YXZD1KZGQXxZmQ2MDMOIn0%3D
Key : base64:NEMESCXelEv2iYzbgq3N30b9IAnXzQmR7LnSzt70rso=
[*] Unciphered value
9b9c10a2ca741015741d6c60bbledf582F9bb9a3 |uBONINBjLg8yxyUDjAm3vGpSpXg7DtXF114QoYUB
0%| | 550/580461 [00:47<10:30:50, 15.32it/s]
[+] It is your lucky day! A key was identified!
Cipher : eyJpdiI6IKREUHJIPc294Y1JPdmpVb1RMZKMWMEE9PSIsINZhbHV1IjoidUNgNFpRb1FKWFh1QTdIbjdLN1ZncUcyRnRuT2xoWXp3UmtpNzNwdnoyQy9zWWFYQjVLRmpiMzd
pVEdxQz10djhXVGR5QzVgNWxic2pxTWOIME1ZUUd1TQ1INKL3FiZk8xROh1cUYwTKkMAWXEYycFNNQ2hJZmRHbGQyTOXFK3FwS3giLCItYWMiOiIy0TU3MTQyZWU3Y jI1Mj lmZDdhMDM2M2M
2ZmM2NzgyNzIwMjQzYmI3M2RiMjd1MjA1IM]jgwOWIwZmZhNmQ4ZmRj IiwidGFnIjoiIn0%3D
Key : base64:/VR7itPRMggN281EBagG3/F3YV+RaTh8u973wcwHc/U=
[*] Unciphered value
014213f0ee5a59a74bbed8h4dee45df7¢c08322ec |INtL1IpB3WOCxioLf7vfZXeh4ed88IdodKxcIPFul
0%|\ | 797/580461 [01:04<9:35:09, 16.80it/s]
[+] It is your lucky day! A key was identified!
Cipher : eyJpdiI6®IkZxTDJIVSGxQcjZNcVkOODhjbEppbOEIPSIsINZhbHV1IjoibUowanFPQnFCd1MyNFZjOFYWULRTUTLDQ11z0TdRK2R6amxTZ1FyKORUZTFLR25JbjBibmFRdFp
hMVBKNmxJOHdseDFRc j LHNkY1bW10aXVwS1FkbVdyRUJKMXpnU1RsSUZ1WjgzY1IxZU81VCtMeEJOcDYrcHI30VhhajFSTEsiLCItYWMiOiIyNzQwZWRhNzk2YTgONDFmOGE20TQyYTc
zMmIxNzg4Yz1lkYTkwMzRhMGIkMzIKMmZKZmY5Yzc40DVhMTBhZjB1lIiwidGFnIjoiIn0%3D
Key : base64:W8UqtE9LHZW+gRag7804BCbN1MOw4HdaIFdLgH)/9PA=
[*] Unciphered value \
4ab8d850859340bT637c74a41096648dTd22a460 |[Wne2jqunVQILUWrYHpxUPo7U5rWE2CiMt7F6yMdo
0%|\ | 862/580461|[01:08<9:04:23L 17.74it/s]

GreHack - Deep dive in laravel encryption 36

Laravel Cryto Killer - bruteforce

GreHack - Deep dive in laravel encryption

= SYNACKTIV

31

Laravel Cryto Killer - bruteforce #SYNACKTIV

= Here is the result of our forth brute force

$ cat results/results_580461_v4.0.json | tail
"value": "3b4e03323f4fb5af7ed84090e39d311b28149cf0O|APV5I6SR7AUYK5WoyOcdHYHOdXb1mXQeDw8wG3SROOOT\ueeof",
"cipher": "eyJpdiI6I1lg3LOJvSytwY2Evb1lFDd1NDCcDhBWEE9OPSISINZhbHV1IjoiNEJaSTYzSkRBVXFmY1ZzNjBrNw
J5RTVXROFPNG5kN25Kb0120FNWUS9pZ2hnNDBxdS9pajFLL2dsbVVHem15QWZpOFdvU1ZSTzRBOU1DRO5jSThOND
MvQm5DcFNVQjMzeXRkU3VqT1cySEpVZ LpGREhqVHhVNWZFa3pPOGgXN1ciLCItYWMi01I5ZjA3YWQYZTFKMWUwWY jM3
ZTAWMWUWY jVjNWQwYzVhMjM5NmYOMGQWMmMQYNTAmZDY4NjYOMDJI IM2I2YWMyMDM5IiwidGFnIjoiIn0%3D",
"is_serialized_data": false

}
1,

"command_used": "./laravel_crypto_killer.py bruteforce --cipher_file cipherlists/tokens_output.txt",
"number_of_ciphers_loaded": 580461,

"number_of_key_cracked": 6364,

"number_of_serialized_data": 416

38

GreHack - Deep dive in laravel encryption

Laravel Crypto Killer - bruteforce

= Offline bruteforce of XSRF Token or any serialized value with the help of a custom Wordlist

= Timeline differents actions with brute force for 580461 Ciphers loaded (>1% of all the exposed Laravel instances)

Timeline of Brute Force Results

= SYNACKTIV

Keys Cracked 6364
6000 | —B— Serialized Data 4th BF
4987
5000
4625 3rd BF
2nd BF
4000
=
2
O 3000t 2727
1st BF
2000
1000}
386 416
123 " —
C
0 =
Jul 26 Sep 04 Sep 11 Sep 18

GreHack - Deep dive in laravel encryption

Date

39

APP_KEYs identified by the attack ESYNACKTIV

491
313
216
152
147

GreHack - Deep dive in laravel encryption

base64:W8EUgtE?LHZW+gRag/7804BCbN1MOw4HdalFdLgHJ/9PA=
base64:SbzM2tzPsCSIpTEdyaju8l9w2C5vmtd4fNAduiLEgng=
base64:U29tZVJhbmRvbVNOcmluZ09mMzJDaGFycOV4AYWNObHk=
SomeRandomString
base64:RR++yx2r)9kdxbdh3+AmbHLDQu+Q76i++co?Y8ybbno=

SomeRandomStringWith32Characters

40

APP_KEYs identified by the attack
g | W | Sk

= SYNACKTIV

561

491

313

216

152
147

base64:W8UqtE9LHZW+gRag7804BCbN1MOw4HdalFdLqHJ/9PA=

base64:SbzM2tzPsCSlpTEdyaju8I9w2C5vmtd4fNAduiLEqgng=

base64:U29tZVJhbmRvbVNOcmIuZ09mMzJDaGFycOV4YWNObHk=

SomeRandomString

base64:RR++yx2rJ9kdxbdh3+AmbHLDQu+Q76i++co9Y8ybbno=

SomeRandomStringWith32Characters

Advanced Stock Management
Point of Sale Invoicing
Application

Frequently used in bootstrap
project

base64 value of
SomeRandomStringOf32
CharsExactly

Default APP_KEY on older
Laravel Version

Invoice Ninja

Was a default Laravel APP_KEY

a1

10C implication #SYNACKTIV

= Laravel session and XSRF-TOKEN cookies are publicly indexed on platforms like
Shodan, allowing stealthy APP_KEY brute-forcing without direct server interaction.

= Common web ports often bypass firewall filtering.
= With avalid APP_KEY , attackers can exploit pre-authenticated decrypt calls to

compromise the server.

An offline attack is stealthier than other types of attack. (Winston Churchill)

42

GreHack - Deep dive in laravel encryption

Mitigation for Laravel HSYNACKTIV

1. Always generate strong, unique APP_KEY (php artisan key:generate)

2. Regularly audit applications for weak or default keys and apply a rotate strategy
3. Banish the usage of unserialize in any application based on Laravel

4. Use encryptString and decryptString instead of encrypt and decrypt

5. Restrict Access to Environment Files

GreHack - Deep dive in laravel encryption 43

GreHack - Deep dive in laravel encryption

Conclusion

= SYNACKTIV

44

Conclusion - Our Research

= Analyze of decrypt functions and its flaw
= Analyze of Laravel publicly exposed instances (Token and Key)

= Evaluation for opportunist risk on the wild

GreHack - Deep dive in laravel encryption

= SYNACKTIV

45

Conclusion - Actually

= Mismanaged APP_KEY s pose serious security threats

= Proper security practices must be followed:
= Use strong, unique keys

= Regular audits

= Avoid relying on default settings

GreHack - Deep dive in laravel encryption

= SYNACKTIV

46

Conclusion - Future

File read vulnerabilities will enhanced risk of future exploitation

Improvement of laravel crypto killer :
= |Improve brute force method for large scaling

= Add an option to retrieve XSRF-TOKEN from an URL or List

Improvement of wordlist :
= Optimize open source crawling

= Update Wordlist for relevant bruteforce (Top 10 Key)

Improvement for Laravel
= Deactivate usage serialization by default

= Communicate about decrypt risks

= Patch pop chains :)

GreHack - Deep dive in laravel encryption

= SYNACKTIV

a1

= SYN

o
1N https://www.linkedin.com/company/synacktiv
y https:/ /twitter.com/synacktiv

A : ;
O https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

https://github.com/synacktiv/laravel-crypto-killer

Bibliography 2 SYNACKTIV

= Laravel Crypto Killer Tools : https:/github.com/synacktiv/laravel-crypto-killer
» PHPGGC : https:/github.com/ambionics/phpggc
= Laravel Encryption documentation : https:/laravel.com/docs/11.x/encryption

= Blogpost from Timo Mduller about exploits based on APP_KEY :
https:/mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-
leaked-app_keys-and-queues/

= CVE-2018-15133: https:/cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2018-15133

= Commit removing SESSION_DRIVER=cookie by default :
https:/github.com/laravel/laravel/commit/eca/bc/d66cef63500a62e8deaa3fcel/ /21
641

GreHack - Deep dive in laravel encryption

50

https://github.com/synacktiv/laravel-crypto-killer
https://github.com/ambionics/phpggc
https://laravel.com/docs/11.x/encryption
https://mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-leaked-app_keys-and-queues/
https://mogwailabs.de/en/blog/2022/08/exploiting-laravel-based-applications-with-leaked-app_keys-and-queues/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15133
https://github.com/laravel/laravel/commit/eca7bc7d66cef63500a62e8deaa3fce1772f1641
https://github.com/laravel/laravel/commit/eca7bc7d66cef63500a62e8deaa3fce1772f1641

Bihliographv 2 SYNACKTIV

= Patch Snipe-IT : https:/github.com/snipe/snipe-
it/commit/092abch44bb303019e43b005a866dfff54a2ede84#diff-
9d0a0//acdal3/5ef8f06f2 /e2f82303/20/bcbaa?2lc2c8/cf4c113a13a3eb0c4 94

= Patch InvoiceNinja :
https:/github.com/invoiceninja/invoiceninja/commit/d?3020214/2c3e/e23bac8c3d

5fbec5/7a5f38f0c

= Patch InvoiceShelf :
https:/github.com/InvoiceShelf/InvoiceShelf/commit/aé4/01bda5 /70629 /75/7d3dd5a
927 7584fcOaeb34c

51

GreHack - Deep dive in laravel encryption

https://github.com/snipe/snipe-it/commit/09abcb44bb303019e43b005a866dfff54a2ede84#diff-9d0a077acda375ef8f06f27e2f823037207bcbaa21c2c87cf4c113a13a3eb0c4L94
https://github.com/snipe/snipe-it/commit/09abcb44bb303019e43b005a866dfff54a2ede84#diff-9d0a077acda375ef8f06f27e2f823037207bcbaa21c2c87cf4c113a13a3eb0c4L94
https://github.com/snipe/snipe-it/commit/09abcb44bb303019e43b005a866dfff54a2ede84#diff-9d0a077acda375ef8f06f27e2f823037207bcbaa21c2c87cf4c113a13a3eb0c4L94
https://github.com/invoiceninja/invoiceninja/commit/d9302021472c3e7e23bac8c3d5fbec57a5f38f0c
https://github.com/invoiceninja/invoiceninja/commit/d9302021472c3e7e23bac8c3d5fbec57a5f38f0c
https://github.com/InvoiceShelf/InvoiceShelf/commit/a64701bda570629757d3dd5a9277584fc0aeb34c
https://github.com/InvoiceShelf/InvoiceShelf/commit/a64701bda570629757d3dd5a9277584fc0aeb34c

	Page 1
	Laravel - Deep dive in laravel encryption

	Page 2
	Introduction
	Who are we?

	Page 3
	Table of content

	Page 4
	Introduction to Laravel

	Page 5
	Introduction to laravel

	Page 6
	Encrypt function usage

	Page 7
	Encrypted value format

	Page 8
	Laravel exposure to unserialize attacks

	Page 9
	Laravel exposure to unserialize attacks

	Page 10
	Decrypt function

	Page 11
	What about the APP_KEY

	Page 12
	Storage Locations for APP_KEY
	Where is APP_KEY stored?

	Page 13
	Key Rotation

	Page 14
	Key Rotation

	Page 15
	Securing the APP_KEY

	Page 16
	Attack surface analysis

	Page 17
	Laravel Crypto Killer

	Page 18
	Laravel Crypto Killer (Demo)

	Page 19
	Vulnerability research on this type of pattern

	Page 20
	Vulnerable patterns

	Page 21
	Vulnerable patterns - vulnerable products

	Page 22
	Snipe-IT

	Page 23
	Invoice Ninja

	Page 24
	Crater --> InvoiceShelf

	Page 25
	Analysis of the APP_KEY quality in publicly accessible Laravel applications

	Page 26
	Previous attack based on an APP_KEY leakage : Androxgh0st

	Page 27
	Use for attacker

	Page 28
	Use for attacker

	Page 29
	Analysis performed by Synacktiv

	Page 30
	Find Token in the wild

	Page 31
	Let's GO Shodan

	Page 32
	Find APP_KEY in the wild

	Page 33
	Find APP_KEY in the wild

	Page 34
	The Danger of Default APP_KEY

	Page 35
	Laravel Cryto Killer - bruteforce

	Page 36
	Laravel Cryto Killer - bruteforce

	Page 37
	Laravel Cryto Killer - bruteforce

	Page 38
	Laravel Cryto Killer - bruteforce

	Page 39
	Laravel Crypto Killer - bruteforce

	Page 40
	APP_KEYs identified by the attack

	Page 41
	APP_KEYs identified by the attack

	Page 42
	IOC implication

	Page 43
	Mitigation for Laravel

	Page 44
	Conclusion

	Page 45
	Conclusion - Our Research

	Page 46
	Conclusion - Actually

	Page 47
	Conclusion - Future

	Page 48
	Page 49
	Page 50
	Bibliography

	Page 51
	Bibliography

