
1

PUBLIC

Demystifying Objective-C
internals

A practical approach

Sthack
23/05/2025

2

2PUBLIC

whoami

 Victor Cutillas
 Security researcher @ Synacktiv

 Reverse engineering
 Exploitation

 Mostly working on iOS

3

3PUBLIC

Agenda

 Context
 Objective-C 101
 Compilation
 Metadata
 Reversing tips
 Objective-C helper plugin
 Conclusion

4

4PUBLIC

Context

5

5PUBLIC

Context
 What is the aim of this talk?

 It is not to be technically exhaustive
 You should be able to dive deeper yourself afterwards

 It is not to discuss which tool is the best
 We are focusing on understanding static analysis methodology

 It is to give iOS newcomers keys to analyze Objective-C code
 What is the role of the runtime?
 How to efficiently reverse engineer Objective-C implementations?
 How to recover types of manipulated variables?

 An IDA plugin is also presented to ease analysis

6

6PUBLIC

Context

 Objective-C appeared in 1984
 Derived from Smalltalk
 Used in NeXTSTEP, the historical code base of Darwin (macOS)

 Apple language of reference until 2014
 New code bases now use Swift
 As of iOS 18.4, among 3800+ libraries in the shared cache

 90% rely on Objective-C code
 Almost all core services are implemented using Objective-C

7

7PUBLIC

Context
 It is a superset of the C language

 Compatible with the C syntax
 It is also possible to write Objective-C++

 It is object-oriented
 Notion of classes, inheritance

 … and reflective
Reflection is the ability of a process to examine, introspect, and modify
its own structure and behavior.

Reflective programming – Wikipedia
 This implies metadata!

https://en.wikipedia.org/wiki/Reflective_programming

8

8PUBLIC

Objective-C 101

9

9PUBLIC

Objective-C 101

 Basic terminology
 Class: set of methods, properties & instance variables
 Instance variable: a field of a class
 Property: instance variable with compiler-generated getter/setter

 Objective-C is message-based
 Protocol: defines a required set of methods & properties

 Similar to a C++ interface
 Selector: pointer to a C-style string discriminating a method
 Message passing: alternative name for method calling

Reverser edition!

10

10PUBLIC

Objective-C 101

 NSObject root class
 All Objective-C classes inherit from this class

 The only other root class is NSProxy (out of this talk scope)
 Implemented by Foundation
 Provides a default set of methods

Reverser edition!

raw.m:19:12: warning: class 'A' defined without specifying a base class [-Wobjc-root-class]
@interface A
 ^
raw.m:19:18: note: add a super class to fix this problem
@interface A
 ^
 : NSObject

11

11PUBLIC

Objective-C 101
 NSObject root class

 Lifetime
+ alloc
- retain
- release
- init

 Some of them are designed to be overridden, some examples:
- description
- valueForUnknownKey:

Reverser edition!

 Introspection
+ isSubclassOfClass:
- isKindOfClass:
- respondsToSelector:
- valueForKey:

 Describing
- description
- debugDescription

12

12PUBLIC

Objective-C 101

 Objects lifetime
 Automatic Reference Counting (ARC) is used everywhere
 No explicit calls to retain/release are made in the code

 The compiler triggers an error if the developer uses them
 Lifetime-related calls are automatically generated by the compiler

Reverser edition!

13

13PUBLIC

Objective-C 101
 Objective-C runtime

 Source code is available on GitHub*
 Objective-C code links to the runtime library

 libobjc.A.dylib
 The runtime exposes functions called by the compiler

 objc_msgSend()
 objc_release()
 objc_retain()

 It also exposes a user API: <objc/runtime.h>
 More on that later

Reverser edition!

 objc_opt_isKindOfClass()
 objc_autoreleasePoolPush()
 …

* https://github.com/apple-oss-distributions/objc4

https://github.com/apple-oss-distributions/objc4

14

14PUBLIC

Objective-C 101

 Foundation framework
 Implements base objects, below are a few examples

 Language features
 Arrays, dictionaries, sets
 Strings, numbers

 Operating system interactions
 Filesystem
 Networking

 Inter-process communication (NSXPC)

Reverser edition!

 Process management

 Archiving, unarchiving
 Errors

15

15PUBLIC

Compilation

16

16PUBLIC

Compilation
 Toolchain

 Apple uses the LLVM toolchain
 It is opensource*
 Apple maintains its own version with proprietary patches

 Clang is therefore the officially supported compiler
 It is used by Apple’s IDE, Xcode
 It can also be directly used in the command line

* https://llvm.org/

https://llvm.org/

17

17PUBLIC

Compilation
 Code generation

 Consider Objective-C as being internally transpiled to C
 Here is a method from UIKitCore class UIView

 Let’s understand its generated implementation step by step

@implementation UIView

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 [self->_traitChangeRegistry
 registerAuxiliaryChildEnvironmentForTraitInvalidations:obj];
}

@end

18

18PUBLIC

Compilation
 Code generation

 Method calls are converted to objc_msgSend() calls

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 [self->_traitChangeRegistry
 registerAuxiliaryChildEnvironmentForTraitInvalidations:obj];
}

19

19PUBLIC

Compilation
 Code generation

 This previous method call

 … is made on an object
 … invokes the method identified by its selector
 … passes one method argument

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

20

20PUBLIC

Compilation
 Code generation

 Note: the code is a bit simplified for readability
 objc_msgSend() must actually be cast to be called
 The selector must be wrapped

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 (void (*)(id, SEL, id) objc_msgSend)(
 self->_traitChangeRegistry,
 @selector(registerAuxiliaryChildEnvironmentForTraitInvalidations:),
 obj);
}

21

21PUBLIC

Compilation
 Code generation

 The example UIView method

 … is called on an instance of a class
 … is identified by its selector
 … expects one argument
 … does not have a return value

 Here is the corresponding C implementation declaration

 This is identical to the corresponding objc_msgSend() calls
void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj);

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj;

22

22PUBLIC

Compilation
 Code generation

 [[cls alloc] init] is a common object creation pattern
 This call chain is optimized by the compiler

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = objc_alloc_init(&OBJC_CLASS____UITraitChangeRegistry);
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

23

23PUBLIC

Compilation
 Code generation

 ARC automatically calls lifetime-related functions
 objc_retain(), objc_release()
 objc_autorelease(), objc_claimAutoreleasedReturnValue()

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 obj = objc_retain(obj);
 if (self->_traitChangeRegistry == nil) {
 _UITraitChangeRegistry *old = self->_traitChangeRegistry;
 self->_traitChangeRegistry = objc_alloc_init(&OBJC_CLASS____UITraitChangeRegistry);
 objc_release(old);
 }
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
 objc_release(obj);
}

24

24PUBLIC

Compilation
 Code generation

 It is possible to convert Objective-C to C++ using a compiler flag
 This may help you better understand code generation
 Is is also pretty useful to better understand metadata structures

static void _I_UIView__registerAuxiliaryChildEnvironmentForTraitInvalidations_(UIView * self, SEL _cmd, __strong id obj) {
 if ((*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)) == __null)
 (*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)) =
 ((_UITraitChangeRegistry *(*)(id, SEL))(void *)objc_msgSend)((id)((
 _UITraitChangeRegistry *(*)(id, SEL))(void *)objc_msgSend)(
 (id)objc_getClass("_UITraitChangeRegistry"), sel_registerName("alloc")), sel_registerName("init"));
 ((void (*)(id, SEL, __strong id))(void *)objc_msgSend)(
 (id)(*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)),
 sel_registerName("registerAuxiliaryChildEnvironmentForTraitInvalidations:"), (id)obj);
}

clang -arch arm64 -isysroot "$SDK_ROOT" -I"$SDK_ROOT"/usr/include -fobjc-arc -rewrite-objc code.m

25

25PUBLIC

Compilation
 Method calls optimization

 Since iOS 17, no direct calls to objc_msgSend() are made
 Stubs are generated and shared as much as possible
 They are shared between shared cache libraries

_objc_msgSend$_registerAuxiliaryChildEnvironmentForTraitInvalidations_:
ADRP X1, #selRef__registerAuxiliaryChildEnvironmentForTraitInvalidations_@PAGE
LDR X1, [X1,#selRef__registerAuxiliaryChildEnvironmentForTraitInvalidations_@PAGEOFF]
ADRP X16, #_objc_msgSend_ptr@PAGE
LDR X16, [X16,#_objc_msgSend_ptr@PAGEOFF]
BR X16

BL _objc_msgSend$_registerAuxiliaryChildEnvironmentForTraitInvalidations_

26

26PUBLIC

Compilation
 Objective-C blocks

 Anonymous functions, similar to C++ lambdas
 Very common in Apple code

 Mostly because of interactions with libdispatch.dylib
 This library provides a C API for executing code concurrently

 Most common use cases are
 Lazy initialization → dispatch_once()
 Asynchronous function call → dispatch_async()
 Synchronous function call → dispatch_sync()
 Various callbacks → filtering, enumeration, …

27

27PUBLIC

Compilation
 Objective-C blocks

 Example method from NSConcreteFileHandle (Foundation)

 The block code will be executed on the given queue (a thread)

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(){
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 });
}

28

28PUBLIC

Compilation
 Objective-C blocks void closeFile(NSConcreteFileHandle *self, SEL sel)

{
 if (self->_flags & FILE_CLOSED)
 return;
 objc_msgSend(self, "_cancelDispatchSources");
 Block_layout_closeFile block = {
 .isa = &OBJC_CLASS_____NSStackBlock__,
 .flags = 0xC0000000,
 .invoke = closeFile_block_invoke,
 .descriptor = &closeFile_block_descriptor,
 .self = self,
 };
 dispatch_async(self->_monitoringQueue, &block);
}

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(){
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 });
}

void closeFile_block_invoke(Block_layout_closeFile *block)
{
 block->self->_flags |= FILE_CLOSED;
 close(block->self->_fd);
}

29

29PUBLIC

Compilation
 Objective-C blocks

 Blocks are objects generated by the compiler

 invoke points to a native function containing the block code
 Blocks can also take parameters, additionally passed to this function

 descriptor provides metadata about the block (more on that later)
 The layout of the structure also includes captured variables

struct Block_layout_closeFile {
 Class isa;
 int32_t flags;
 int32_t reserved;
 void (*invoke)(Block_layout_closeFile *block);
 Block_descriptor *descriptor;
 // Captured variables
 NSConcreteFileHandle *self;
};

30

30PUBLIC

Compilation
 Objective-C blocks

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(NSError *error){
 if (error == nil) {
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 }
 });
} void closeFile_block_invoke(Block_layout_closeFile *block, NSError *error)

{
 if (error == nil) {
 block->self->_flags |= FILE_CLOSED;
 close(block->self->_fd);
 }
}

31

31PUBLIC

Compilation
 Objective-C blocks

 You will encounter two main types of blocks

 Global blocks
 Are stored in a read-only section of the Mach-O
 Typically used for lazy initialization of global data: dispatch_once()

 Stack blocks
 Created at runtime
 Used when local variables are captured

32

32PUBLIC

Metadata

33

33PUBLIC

Metadata
 Objective-C data is stored in dedicated sections

 This allows dyld to properly register Objective-C information to
the runtime

 Their name is prefixed with __objc_, here are some examples
Section name Contents

__objc_classlist
__objc_protolist Pointers to defined classes & protocols

__objc_selrefs
__objc_classrefs Pointers to selectors & classes used by this Mach-O

__objc_ivar Instance variable offsets
__objc_data Structures of defined classes & metaclasses
__objc_const Constant data: typically classes & metaclasses information

34

34PUBLIC

Compilation
 Listing method calls

1) Go to the corresponding method_t structure
 By listing references to the implementation
 Or directly searching the selector string

35

35PUBLIC

Compilation
 Listing method calls

2) Find all stubs referencing this selector

36

36PUBLIC

Compilation
 Listing method calls

3) List & filter stub calls if other methods share this selector

37

37PUBLIC

Metadata

 Calling a method
 Let’s figure out how objc_msgSend() decides what to call
 This will walk us through the Objective-C metadata structures

 Keep in mind that all data structures are public

38

38PUBLIC

Metadata
 Calling a method

1) ISA (class) pointer is used to fetch metadata about the object
2) Class information is then fetched

39

39PUBLIC

Metadata
 Calling a method

 The runtime now has access to metadata lists concerning
 ivars Instance variables (structure fields)
 base_props Class properties (ivars with getter and/or setter)
 base_meths Defined methods
 base_prots Protocols the class conforms to

40

40PUBLIC

Metadata
 Calling a method

3) Runtime iterates over the list of all declared methods
4) Requested selector is compared with each method selector

41

41PUBLIC

Metadata
 Calling a method

5) When a match is found, the implementation is called

42

42PUBLIC

Metadata
 Calling a method

6) Method not found?
 Start over by looking it up in the super class

 No super class? Runtime calls [obj doesNotRecognizeSelector:]
 NSObject implementation throws an exception, leading to a crash

43

43PUBLIC

Metadata
 Method signature

 Let’s take a look at this types field

 This string encodes information about arguments

44

44PUBLIC

Metadata
 Method signature

 Type encoding is partially documented
 Describes return value and arguments: type, location

 @0:8 is by definition common to all Objective-C methods

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html

45

45PUBLIC

Metadata
 Method signature

 Side note: variadic Objective-C methods exist
 Yet, no metadata is available to check that they are variadic
 Method signatures simply stop before the variadic arguments

@interface NSSet

// Signature is "@24@0:8@16"
+ (NSSet *)setWithObject:(id)obj;
// Signature is identical
+ (NSSet *)setWithObjects:(id)obj, ...;

@end

46

46PUBLIC

Metadata
 Type encoding

 Describes primitive types
 Numbers
 Objects (instance, class)

 … and recursive types
 Pointers
 Arrays
 Structures, unions

 A public documentation exists

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html

47

47PUBLIC

Metadata
 Type encoding

 Encoded structure type

 Argument type: UIContentViewElementLayoutInfo *
 Associated data structures

^{UIContentViewElementLayoutInfo={CGSize=dd}B{NSDirectionalEdgeInsets=dddd}}

struct UIContentViewElementLayoutInfo {
 CGSize var1;
 BOOL var2;
 NSDirectionalEdgeInsets var3;
};

struct NSDirectionalEdgeInsets {
 double var1;
 double var2;
 double var3;
 double var4;
};

struct CGSize {
 double var1;
 double var2;
};

48

48PUBLIC

Metadata
 Extended type encoding

 Some metadata structures contain extended type encoding
 Instance variables information
 Protocols
 Block descriptors

 They contain additional information about objects & structures
 Protocol the object shall conform to
 Expected object class
 Structure field names

49

49PUBLIC

 Extended type encoding
 Instance variables type

Metadata

50

50PUBLIC

 Extended type encoding
 Block signature

 Here a protocol is specified for the return value

 Protocol method
 Object class names in protocols are required for NSXPC serialization

Metadata

@"<NSCopying>"40@?0r^v8{_NSRange=QQ}16^B32

id<NSCopying>(^)(Block_layout_f00 *, const void *, _NSRange, bool *);

@"NSData"16@0:8 NSData *(id, SEL);

51

51PUBLIC

Reversing tips

52

52PUBLIC

 Some instance variables are accessed through their metadata
 Their offset in the object is fetched at runtime

 This is not true for all instance variables
 It is then possible to deduce the associated object type

 Here, the decompiler inlines the offset value and adds it to v5
 v5 can therefore be safely assumed to be UIView * (or a subclass)

-[_UITraitChangeRegistry updateAuxiliaryChildrenTraitsIfNeeded](*((_QWORD *)v5 + 6));

Reversing tips – Recovering types

ADRP X8, #_OBJC_IVAR_$_UIView._traitChangeRegistry@PAGE
LDRSW X8, [X8,#_OBJC_IVAR_$_UIView._traitChangeRegistry@PAGEOFF]
LDR X0, [X23,X8] ; X23 is v5
BL ___UITraitChangeRegistry_updateAuxiliaryChildrenTraitsIfNeeded_

-[_UITraitChangeRegistry updateAuxiliaryChildrenTraitsIfNeeded](v5->_traitChangeRegistry);

53

53PUBLIC

Reversing tips – Recovering types
 Some instance variables are accessed through their metadata

 Accesses to this instance variable can be easily listed
 Keep in mind that this is only valid for a subset of instance variables

 This type recovery method can be automated in your analysis tool

54

54PUBLIC

Reversing tips
 Private frameworks can be imported

 Objective-C frameworks can be dynamically loaded via dlopen()
 Use the runtime API to manipulate private classes

 Example: check if the device sends crash logs to Apple
@interface OSASystemConfiguration : NSObject
- (BOOL)optInApple;
@end

int main(void)
{
 dlopen("/System/Library/PrivateFrameworks/OSAnalytics.framework/OSAnalytics",
 RTLD_NOW);
 OSASystemConfiguration *conf = [[objc_getClass("OSASystemConfiguration") alloc] init];
 printf("optInApple = %s\n", conf.optInApple ? "true" : "false");
}

55

55PUBLIC

 Instrumenting methods
 The runtime provides a simple way to hook method calls

Reversing tips

int main(void) {
 Method method = class_getInstanceMethod(objc_getClass("NSArray"),
 sel_registerName("description"));
 description_impl = method_setImplementation(method, description_hook);
 NSLog(@"Array: %@", @[@42, @"hello"]); // Calls -[NSArray description]
}

// Hooking -[NSArray description]
NSString *(*description_impl)(id, SEL) = NULL;
NSString *description_hook(id self, SEL sel) {
 NSString *desc = description_impl(self, sel);
 printf("%p description: %s", (__bridge void *)self,
 desc.UTF8String);
 return desc;
}

$./hook
0x109b380d0 description: (
 42,
 hello
)

56

56PUBLIC

Reversing tips
 Reference counting optimization

 Since iOS 16, calls to refcount-related functions are specialized

 obj parameter can now be passed in any ARM64 register
 From X0 to X25
 Except sensitive registers X16, X17, X18

 This reduces register manipulation in generated assembly
 Return value is still stored in X0

id objc_retain(id obj);
void objc_release(id obj);

57

57PUBLIC

Reversing tips
 Reference counting optimization

 Specialized flavours are exposed by the runtime
 See header file runtime/objc-abi.h

 A decent reversing tool should support those calls
 They are omnipresent in generated assembly code
 Decompiler output is messy without support

_objc_retain_x2:
 ANDS X0, X2, X2
 B.LE objc_retain_ret
 LDXR X16, [X2]

_registerAuxiliaryChildEnvironmentForTraitInvalidations:
 SUB SP, SP, #0x30
 STP X20, X19, [SP,#0x20+var_10]
 STP X29, X30, [SP,#0x20+var_s0]
 ADD X29, SP, #0x20
 MOV X19, X0
 BL _objc_retain_x2 ; Argument is retained
 MOV X1, X0

https://github.com/apple-oss-distributions/objc4/blob/f126469408dc82bd3f327217ae678fd0e6e3b37c/runtime/objc-abi.h

58

58PUBLIC

Reversing tips
 Runtime uses Pointer Authentication Code (PAC)

 Cryptographic ARM64 hardware protection
 Available since iPhone XS & XR (A12+ SoCs)

 Enables developers to protect pointers with signatures

 An attacker controlling a protected pointer must then provide
 A valid address
 A valid signature of this address
 Otherwise a fatal error is triggered (kernel sends a SIGKILL)

 This dramatically increases exploitation difficulty

59

59PUBLIC

Reversing tips
 Runtime uses Pointer Authentication Code (PAC)

 Data pointers
 Object class pointers (ISA) are protected

 Prevents memory corruption & Use-After-Free bugs
 Caches, custom virtual tables, dynamically registered metadata, etc.

 Function pointers
 Exception handling, image loading, internal hooks, trampolines, etc.

 Distinct discriminators are used for all pointer types
 Integers scrambled with the pointer they are signed with
 Provides a semantic enforcement on signed pointers authentication

60

60PUBLIC

Objective-C helper plugin

61

61PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Decompiler output contains many (usually) irrelevant runtime calls
 Lifetime

objc_retain(), objc_release()
 Return values

objc_autorelease(), objc_claimAutoreleasedReturnValue()
 Property manipulation

objc_storeStrong(), objc_loadWeakRetained()

 They slow down the analyst when reading code
 … and also prevent type propagation

62

62PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Return values are made opaque when claimed
 Ambiguous variable typing
 Method implementations are unresolved on untyped variables

UIViewControllerViewAnimator *from;
id view;
id window;
id controller;

view = objc_claimAutoreleasedReturnValue(
 -[UIViewControllerViewAnimator view](
 from, "view"));
window = objc_claimAutoreleasedReturnValue(
 objc_msgSend(v77, "window"));
controller = objc_claimAutoreleasedReturnValue(
 +[UIWindowController windowControllerForWindow:](
 &OBJC_CLASS___UIWindowController,
 "windowControllerForWindow:",
 window));
objc_release(v78);
objc_release(v77);

63

63PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Removing those calls enhances the analysis efficiency
 Greatly improved type propagation

 Method calls are chained
 Fewer intermediate variables
 Around 10% to 20% fewer lines of decompiled code

UIViewController *from;
UIWindowController *controller;

controller = +[UIWindowController windowControllerForWindow:](
 &OBJC_CLASS___UIWindowController,
 "windowControllerForWindow:",
 -[UIView window](-[UIViewController view](from, "view"), "window"));

64

64PUBLIC

 Decompiler output cleanup
 Implemented using a microcode hook (MMAT_PREOPTIMIZED)

 Intermediate language used by Hex-Rays decompiler
 Runtime calls are replaced by micro instructions “neutralizing” them

 They replicate the caller’s state after the call is made

 Example of a replacement
1) ARM64 assembly

2) Generated microcode

3) Neutralization

Objective-C helper plugin

call !objc_retain <fast:"id obj" x3.8> => id x0.8

BL _objc_retain_x3

mov x3.8, x0.8

65

65PUBLIC

Objective-C helper plugin
 Other feature

 Propagation of cross-references to current method selector

 Release will be made very soon on Synacktiv’s Github page*

* https://github.com/synacktiv/

https://github.com/synacktiv/

66

66PUBLIC

Conclusion

67

67PUBLIC

Conclusion
 Objective-C provides a lot of metadata

 It is very reversing-friendly
 Structures can be easily recovered
 Manipulated types are pretty straightforward to determine

 It will not disappear anytime soon
 90% of shared cache libraries rely on its use
 It is deeply integrated inside the core of iOS

68

PUBLIC

https://www.linkedin.com/company/synacktiv

https://x.com/synacktiv

https://bsky.app/profile/synacktiv.com

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://x.com/synacktiv
https://synacktiv.com/

