
1

PUBLIC

Demystifying Objective-C
internals

A practical approach

Sthack
23/05/2025

2

2PUBLIC

whoami

 Victor Cutillas
 Security researcher @ Synacktiv

 Reverse engineering
 Exploitation

 Mostly working on iOS

3

3PUBLIC

Agenda

 Context
 Objective-C 101
 Compilation
 Metadata
 Reversing tips
 Objective-C helper plugin
 Conclusion

4

4PUBLIC

Context

5

5PUBLIC

Context
 What is the aim of this talk?

 It is not to be technically exhaustive
 You should be able to dive deeper yourself afterwards

 It is not to discuss which tool is the best
 We are focusing on understanding static analysis methodology

 It is to give iOS newcomers keys to analyze Objective-C code
 What is the role of the runtime?
 How to efficiently reverse engineer Objective-C implementations?
 How to recover types of manipulated variables?

 An IDA plugin is also presented to ease analysis

6

6PUBLIC

Context

 Objective-C appeared in 1984
 Derived from Smalltalk
 Used in NeXTSTEP, the historical code base of Darwin (macOS)

 Apple language of reference until 2014
 New code bases now use Swift
 As of iOS 18.4, among 3800+ libraries in the shared cache

 90% rely on Objective-C code
 Almost all core services are implemented using Objective-C

7

7PUBLIC

Context
 It is a superset of the C language

 Compatible with the C syntax
 It is also possible to write Objective-C++

 It is object-oriented
 Notion of classes, inheritance

 … and reflective
Reflection is the ability of a process to examine, introspect, and modify
its own structure and behavior.

Reflective programming – Wikipedia
 This implies metadata!

https://en.wikipedia.org/wiki/Reflective_programming

8

8PUBLIC

Objective-C 101

9

9PUBLIC

Objective-C 101

 Basic terminology
 Class: set of methods, properties & instance variables
 Instance variable: a field of a class
 Property: instance variable with compiler-generated getter/setter

 Objective-C is message-based
 Protocol: defines a required set of methods & properties

 Similar to a C++ interface
 Selector: pointer to a C-style string discriminating a method
 Message passing: alternative name for method calling

Reverser edition!

10

10PUBLIC

Objective-C 101

 NSObject root class
 All Objective-C classes inherit from this class

 The only other root class is NSProxy (out of this talk scope)
 Implemented by Foundation
 Provides a default set of methods

Reverser edition!

raw.m:19:12: warning: class 'A' defined without specifying a base class [-Wobjc-root-class]
@interface A
 ^
raw.m:19:18: note: add a super class to fix this problem
@interface A
 ^
 : NSObject

11

11PUBLIC

Objective-C 101
 NSObject root class

 Lifetime
+ alloc
- retain
- release
- init

 Some of them are designed to be overridden, some examples:
- description
- valueForUnknownKey:

Reverser edition!

 Introspection
+ isSubclassOfClass:
- isKindOfClass:
- respondsToSelector:
- valueForKey:

 Describing
- description
- debugDescription

12

12PUBLIC

Objective-C 101

 Objects lifetime
 Automatic Reference Counting (ARC) is used everywhere
 No explicit calls to retain/release are made in the code

 The compiler triggers an error if the developer uses them
 Lifetime-related calls are automatically generated by the compiler

Reverser edition!

13

13PUBLIC

Objective-C 101
 Objective-C runtime

 Source code is available on GitHub*
 Objective-C code links to the runtime library

 libobjc.A.dylib
 The runtime exposes functions called by the compiler

 objc_msgSend()
 objc_release()
 objc_retain()

 It also exposes a user API: <objc/runtime.h>
 More on that later

Reverser edition!

 objc_opt_isKindOfClass()
 objc_autoreleasePoolPush()
 …

* https://github.com/apple-oss-distributions/objc4

https://github.com/apple-oss-distributions/objc4

14

14PUBLIC

Objective-C 101

 Foundation framework
 Implements base objects, below are a few examples

 Language features
 Arrays, dictionaries, sets
 Strings, numbers

 Operating system interactions
 Filesystem
 Networking

 Inter-process communication (NSXPC)

Reverser edition!

 Process management

 Archiving, unarchiving
 Errors

15

15PUBLIC

Compilation

16

16PUBLIC

Compilation
 Toolchain

 Apple uses the LLVM toolchain
 It is opensource*
 Apple maintains its own version with proprietary patches

 Clang is therefore the officially supported compiler
 It is used by Apple’s IDE, Xcode
 It can also be directly used in the command line

* https://llvm.org/

https://llvm.org/

17

17PUBLIC

Compilation
 Code generation

 Consider Objective-C as being internally transpiled to C
 Here is a method from UIKitCore class UIView

 Let’s understand its generated implementation step by step

@implementation UIView

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 [self->_traitChangeRegistry
 registerAuxiliaryChildEnvironmentForTraitInvalidations:obj];
}

@end

18

18PUBLIC

Compilation
 Code generation

 Method calls are converted to objc_msgSend() calls

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 [self->_traitChangeRegistry
 registerAuxiliaryChildEnvironmentForTraitInvalidations:obj];
}

19

19PUBLIC

Compilation
 Code generation

 This previous method call

 … is made on an object
 … invokes the method identified by its selector
 … passes one method argument

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

20

20PUBLIC

Compilation
 Code generation

 Note: the code is a bit simplified for readability
 objc_msgSend() must actually be cast to be called
 The selector must be wrapped

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 (void (*)(id, SEL, id) objc_msgSend)(
 self->_traitChangeRegistry,
 @selector(registerAuxiliaryChildEnvironmentForTraitInvalidations:),
 obj);
}

21

21PUBLIC

Compilation
 Code generation

 The example UIView method

 … is called on an instance of a class
 … is identified by its selector
 … expects one argument
 … does not have a return value

 Here is the corresponding C implementation declaration

 This is identical to the corresponding objc_msgSend() calls
void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj);

- (void)_registerAuxiliaryChildEnvironmentForTraitInvalidations:(id)obj;

22

22PUBLIC

Compilation
 Code generation

 [[cls alloc] init] is a common object creation pattern
 This call chain is optimized by the compiler

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = objc_alloc_init(&OBJC_CLASS____UITraitChangeRegistry);
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 if (self->_traitChangeRegistry == nil)
 self->_traitChangeRegistry = [[_UITraitChangeRegistry alloc] init];
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
}

23

23PUBLIC

Compilation
 Code generation

 ARC automatically calls lifetime-related functions
 objc_retain(), objc_release()
 objc_autorelease(), objc_claimAutoreleasedReturnValue()

void _registerAuxiliaryChildEnvironmentForTraitInvalidations(UIView *self, SEL sel, id obj)
{
 obj = objc_retain(obj);
 if (self->_traitChangeRegistry == nil) {
 _UITraitChangeRegistry *old = self->_traitChangeRegistry;
 self->_traitChangeRegistry = objc_alloc_init(&OBJC_CLASS____UITraitChangeRegistry);
 objc_release(old);
 }
 objc_msgSend(self->_traitChangeRegistry,
 "registerAuxiliaryChildEnvironmentForTraitInvalidations:",
 obj);
 objc_release(obj);
}

24

24PUBLIC

Compilation
 Code generation

 It is possible to convert Objective-C to C++ using a compiler flag
 This may help you better understand code generation
 Is is also pretty useful to better understand metadata structures

static void _I_UIView__registerAuxiliaryChildEnvironmentForTraitInvalidations_(UIView * self, SEL _cmd, __strong id obj) {
 if ((*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)) == __null)
 (*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)) =
 ((_UITraitChangeRegistry *(*)(id, SEL))(void *)objc_msgSend)((id)((
 _UITraitChangeRegistry *(*)(id, SEL))(void *)objc_msgSend)(
 (id)objc_getClass("_UITraitChangeRegistry"), sel_registerName("alloc")), sel_registerName("init"));
 ((void (*)(id, SEL, __strong id))(void *)objc_msgSend)(
 (id)(*(_UITraitChangeRegistry *__strong *)((char *)self + OBJC_IVAR_$_UIView$_traitChangeRegistry)),
 sel_registerName("registerAuxiliaryChildEnvironmentForTraitInvalidations:"), (id)obj);
}

clang -arch arm64 -isysroot "$SDK_ROOT" -I"$SDK_ROOT"/usr/include -fobjc-arc -rewrite-objc code.m

25

25PUBLIC

Compilation
 Method calls optimization

 Since iOS 17, no direct calls to objc_msgSend() are made
 Stubs are generated and shared as much as possible
 They are shared between shared cache libraries

_objc_msgSend$_registerAuxiliaryChildEnvironmentForTraitInvalidations_:
ADRP X1, #selRef__registerAuxiliaryChildEnvironmentForTraitInvalidations_@PAGE
LDR X1, [X1,#selRef__registerAuxiliaryChildEnvironmentForTraitInvalidations_@PAGEOFF]
ADRP X16, #_objc_msgSend_ptr@PAGE
LDR X16, [X16,#_objc_msgSend_ptr@PAGEOFF]
BR X16

BL _objc_msgSend$_registerAuxiliaryChildEnvironmentForTraitInvalidations_

26

26PUBLIC

Compilation
 Objective-C blocks

 Anonymous functions, similar to C++ lambdas
 Very common in Apple code

 Mostly because of interactions with libdispatch.dylib
 This library provides a C API for executing code concurrently

 Most common use cases are
 Lazy initialization → dispatch_once()
 Asynchronous function call → dispatch_async()
 Synchronous function call → dispatch_sync()
 Various callbacks → filtering, enumeration, …

27

27PUBLIC

Compilation
 Objective-C blocks

 Example method from NSConcreteFileHandle (Foundation)

 The block code will be executed on the given queue (a thread)

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(){
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 });
}

28

28PUBLIC

Compilation
 Objective-C blocks void closeFile(NSConcreteFileHandle *self, SEL sel)

{
 if (self->_flags & FILE_CLOSED)
 return;
 objc_msgSend(self, "_cancelDispatchSources");
 Block_layout_closeFile block = {
 .isa = &OBJC_CLASS_____NSStackBlock__,
 .flags = 0xC0000000,
 .invoke = closeFile_block_invoke,
 .descriptor = &closeFile_block_descriptor,
 .self = self,
 };
 dispatch_async(self->_monitoringQueue, &block);
}

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(){
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 });
}

void closeFile_block_invoke(Block_layout_closeFile *block)
{
 block->self->_flags |= FILE_CLOSED;
 close(block->self->_fd);
}

29

29PUBLIC

Compilation
 Objective-C blocks

 Blocks are objects generated by the compiler

 invoke points to a native function containing the block code
 Blocks can also take parameters, additionally passed to this function

 descriptor provides metadata about the block (more on that later)
 The layout of the structure also includes captured variables

struct Block_layout_closeFile {
 Class isa;
 int32_t flags;
 int32_t reserved;
 void (*invoke)(Block_layout_closeFile *block);
 Block_descriptor *descriptor;
 // Captured variables
 NSConcreteFileHandle *self;
};

30

30PUBLIC

Compilation
 Objective-C blocks

- (void)closeFile
{
 if (self->_flags & FILE_CLOSED)
 return;
 [self _cancelDispatchSources];
 dispatch_async(self->_monitoringQueue, ^(NSError *error){
 if (error == nil) {
 self->_flags |= FILE_CLOSED;
 close(self->_fd);
 }
 });
} void closeFile_block_invoke(Block_layout_closeFile *block, NSError *error)

{
 if (error == nil) {
 block->self->_flags |= FILE_CLOSED;
 close(block->self->_fd);
 }
}

31

31PUBLIC

Compilation
 Objective-C blocks

 You will encounter two main types of blocks

 Global blocks
 Are stored in a read-only section of the Mach-O
 Typically used for lazy initialization of global data: dispatch_once()

 Stack blocks
 Created at runtime
 Used when local variables are captured

32

32PUBLIC

Metadata

33

33PUBLIC

Metadata
 Objective-C data is stored in dedicated sections

 This allows dyld to properly register Objective-C information to
the runtime

 Their name is prefixed with __objc_, here are some examples
Section name Contents

__objc_classlist
__objc_protolist Pointers to defined classes & protocols

__objc_selrefs
__objc_classrefs Pointers to selectors & classes used by this Mach-O

__objc_ivar Instance variable offsets
__objc_data Structures of defined classes & metaclasses
__objc_const Constant data: typically classes & metaclasses information

34

34PUBLIC

Compilation
 Listing method calls

1) Go to the corresponding method_t structure
 By listing references to the implementation
 Or directly searching the selector string

35

35PUBLIC

Compilation
 Listing method calls

2) Find all stubs referencing this selector

36

36PUBLIC

Compilation
 Listing method calls

3) List & filter stub calls if other methods share this selector

37

37PUBLIC

Metadata

 Calling a method
 Let’s figure out how objc_msgSend() decides what to call
 This will walk us through the Objective-C metadata structures

 Keep in mind that all data structures are public

38

38PUBLIC

Metadata
 Calling a method

1) ISA (class) pointer is used to fetch metadata about the object
2) Class information is then fetched

39

39PUBLIC

Metadata
 Calling a method

 The runtime now has access to metadata lists concerning
 ivars Instance variables (structure fields)
 base_props Class properties (ivars with getter and/or setter)
 base_meths Defined methods
 base_prots Protocols the class conforms to

40

40PUBLIC

Metadata
 Calling a method

3) Runtime iterates over the list of all declared methods
4) Requested selector is compared with each method selector

41

41PUBLIC

Metadata
 Calling a method

5) When a match is found, the implementation is called

42

42PUBLIC

Metadata
 Calling a method

6) Method not found?
 Start over by looking it up in the super class

 No super class? Runtime calls [obj doesNotRecognizeSelector:]
 NSObject implementation throws an exception, leading to a crash

43

43PUBLIC

Metadata
 Method signature

 Let’s take a look at this types field

 This string encodes information about arguments

44

44PUBLIC

Metadata
 Method signature

 Type encoding is partially documented
 Describes return value and arguments: type, location

 @0:8 is by definition common to all Objective-C methods

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html

45

45PUBLIC

Metadata
 Method signature

 Side note: variadic Objective-C methods exist
 Yet, no metadata is available to check that they are variadic
 Method signatures simply stop before the variadic arguments

@interface NSSet

// Signature is "@24@0:8@16"
+ (NSSet *)setWithObject:(id)obj;
// Signature is identical
+ (NSSet *)setWithObjects:(id)obj, ...;

@end

46

46PUBLIC

Metadata
 Type encoding

 Describes primitive types
 Numbers
 Objects (instance, class)

 … and recursive types
 Pointers
 Arrays
 Structures, unions

 A public documentation exists

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html

47

47PUBLIC

Metadata
 Type encoding

 Encoded structure type

 Argument type: UIContentViewElementLayoutInfo *
 Associated data structures

^{UIContentViewElementLayoutInfo={CGSize=dd}B{NSDirectionalEdgeInsets=dddd}}

struct UIContentViewElementLayoutInfo {
 CGSize var1;
 BOOL var2;
 NSDirectionalEdgeInsets var3;
};

struct NSDirectionalEdgeInsets {
 double var1;
 double var2;
 double var3;
 double var4;
};

struct CGSize {
 double var1;
 double var2;
};

48

48PUBLIC

Metadata
 Extended type encoding

 Some metadata structures contain extended type encoding
 Instance variables information
 Protocols
 Block descriptors

 They contain additional information about objects & structures
 Protocol the object shall conform to
 Expected object class
 Structure field names

49

49PUBLIC

 Extended type encoding
 Instance variables type

Metadata

50

50PUBLIC

 Extended type encoding
 Block signature

 Here a protocol is specified for the return value

 Protocol method
 Object class names in protocols are required for NSXPC serialization

Metadata

@"<NSCopying>"40@?0r^v8{_NSRange=QQ}16^B32

id<NSCopying>(^)(Block_layout_f00 *, const void *, _NSRange, bool *);

@"NSData"16@0:8 NSData *(id, SEL);

51

51PUBLIC

Reversing tips

52

52PUBLIC

 Some instance variables are accessed through their metadata
 Their offset in the object is fetched at runtime

 This is not true for all instance variables
 It is then possible to deduce the associated object type

 Here, the decompiler inlines the offset value and adds it to v5
 v5 can therefore be safely assumed to be UIView * (or a subclass)

-[_UITraitChangeRegistry updateAuxiliaryChildrenTraitsIfNeeded](*((_QWORD *)v5 + 6));

Reversing tips – Recovering types

ADRP X8, #_OBJC_IVAR_$_UIView._traitChangeRegistry@PAGE
LDRSW X8, [X8,#_OBJC_IVAR_$_UIView._traitChangeRegistry@PAGEOFF]
LDR X0, [X23,X8] ; X23 is v5
BL ___UITraitChangeRegistry_updateAuxiliaryChildrenTraitsIfNeeded_

-[_UITraitChangeRegistry updateAuxiliaryChildrenTraitsIfNeeded](v5->_traitChangeRegistry);

53

53PUBLIC

Reversing tips – Recovering types
 Some instance variables are accessed through their metadata

 Accesses to this instance variable can be easily listed
 Keep in mind that this is only valid for a subset of instance variables

 This type recovery method can be automated in your analysis tool

54

54PUBLIC

Reversing tips
 Private frameworks can be imported

 Objective-C frameworks can be dynamically loaded via dlopen()
 Use the runtime API to manipulate private classes

 Example: check if the device sends crash logs to Apple
@interface OSASystemConfiguration : NSObject
- (BOOL)optInApple;
@end

int main(void)
{
 dlopen("/System/Library/PrivateFrameworks/OSAnalytics.framework/OSAnalytics",
 RTLD_NOW);
 OSASystemConfiguration *conf = [[objc_getClass("OSASystemConfiguration") alloc] init];
 printf("optInApple = %s\n", conf.optInApple ? "true" : "false");
}

55

55PUBLIC

 Instrumenting methods
 The runtime provides a simple way to hook method calls

Reversing tips

int main(void) {
 Method method = class_getInstanceMethod(objc_getClass("NSArray"),
 sel_registerName("description"));
 description_impl = method_setImplementation(method, description_hook);
 NSLog(@"Array: %@", @[@42, @"hello"]); // Calls -[NSArray description]
}

// Hooking -[NSArray description]
NSString *(*description_impl)(id, SEL) = NULL;
NSString *description_hook(id self, SEL sel) {
 NSString *desc = description_impl(self, sel);
 printf("%p description: %s", (__bridge void *)self,
 desc.UTF8String);
 return desc;
}

$./hook
0x109b380d0 description: (
 42,
 hello
)

56

56PUBLIC

Reversing tips
 Reference counting optimization

 Since iOS 16, calls to refcount-related functions are specialized

 obj parameter can now be passed in any ARM64 register
 From X0 to X25
 Except sensitive registers X16, X17, X18

 This reduces register manipulation in generated assembly
 Return value is still stored in X0

id objc_retain(id obj);
void objc_release(id obj);

57

57PUBLIC

Reversing tips
 Reference counting optimization

 Specialized flavours are exposed by the runtime
 See header file runtime/objc-abi.h

 A decent reversing tool should support those calls
 They are omnipresent in generated assembly code
 Decompiler output is messy without support

_objc_retain_x2:
 ANDS X0, X2, X2
 B.LE objc_retain_ret
 LDXR X16, [X2]

_registerAuxiliaryChildEnvironmentForTraitInvalidations:
 SUB SP, SP, #0x30
 STP X20, X19, [SP,#0x20+var_10]
 STP X29, X30, [SP,#0x20+var_s0]
 ADD X29, SP, #0x20
 MOV X19, X0
 BL _objc_retain_x2 ; Argument is retained
 MOV X1, X0

https://github.com/apple-oss-distributions/objc4/blob/f126469408dc82bd3f327217ae678fd0e6e3b37c/runtime/objc-abi.h

58

58PUBLIC

Reversing tips
 Runtime uses Pointer Authentication Code (PAC)

 Cryptographic ARM64 hardware protection
 Available since iPhone XS & XR (A12+ SoCs)

 Enables developers to protect pointers with signatures

 An attacker controlling a protected pointer must then provide
 A valid address
 A valid signature of this address
 Otherwise a fatal error is triggered (kernel sends a SIGKILL)

 This dramatically increases exploitation difficulty

59

59PUBLIC

Reversing tips
 Runtime uses Pointer Authentication Code (PAC)

 Data pointers
 Object class pointers (ISA) are protected

 Prevents memory corruption & Use-After-Free bugs
 Caches, custom virtual tables, dynamically registered metadata, etc.

 Function pointers
 Exception handling, image loading, internal hooks, trampolines, etc.

 Distinct discriminators are used for all pointer types
 Integers scrambled with the pointer they are signed with
 Provides a semantic enforcement on signed pointers authentication

60

60PUBLIC

Objective-C helper plugin

61

61PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Decompiler output contains many (usually) irrelevant runtime calls
 Lifetime

objc_retain(), objc_release()
 Return values

objc_autorelease(), objc_claimAutoreleasedReturnValue()
 Property manipulation

objc_storeStrong(), objc_loadWeakRetained()

 They slow down the analyst when reading code
 … and also prevent type propagation

62

62PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Return values are made opaque when claimed
 Ambiguous variable typing
 Method implementations are unresolved on untyped variables

UIViewControllerViewAnimator *from;
id view;
id window;
id controller;

view = objc_claimAutoreleasedReturnValue(
 -[UIViewControllerViewAnimator view](
 from, "view"));
window = objc_claimAutoreleasedReturnValue(
 objc_msgSend(v77, "window"));
controller = objc_claimAutoreleasedReturnValue(
 +[UIWindowController windowControllerForWindow:](
 &OBJC_CLASS___UIWindowController,
 "windowControllerForWindow:",
 window));
objc_release(v78);
objc_release(v77);

63

63PUBLIC

Objective-C helper plugin
 Decompiler output cleanup

 Removing those calls enhances the analysis efficiency
 Greatly improved type propagation

 Method calls are chained
 Fewer intermediate variables
 Around 10% to 20% fewer lines of decompiled code

UIViewController *from;
UIWindowController *controller;

controller = +[UIWindowController windowControllerForWindow:](
 &OBJC_CLASS___UIWindowController,
 "windowControllerForWindow:",
 -[UIView window](-[UIViewController view](from, "view"), "window"));

64

64PUBLIC

 Decompiler output cleanup
 Implemented using a microcode hook (MMAT_PREOPTIMIZED)

 Intermediate language used by Hex-Rays decompiler
 Runtime calls are replaced by micro instructions “neutralizing” them

 They replicate the caller’s state after the call is made

 Example of a replacement
1) ARM64 assembly

2) Generated microcode

3) Neutralization

Objective-C helper plugin

call !objc_retain <fast:"id obj" x3.8> => id x0.8

BL _objc_retain_x3

mov x3.8, x0.8

65

65PUBLIC

Objective-C helper plugin
 Other feature

 Propagation of cross-references to current method selector

 Release will be made very soon on Synacktiv’s Github page*

* https://github.com/synacktiv/

https://github.com/synacktiv/

66

66PUBLIC

Conclusion

67

67PUBLIC

Conclusion
 Objective-C provides a lot of metadata

 It is very reversing-friendly
 Structures can be easily recovered
 Manipulated types are pretty straightforward to determine

 It will not disappear anytime soon
 90% of shared cache libraries rely on its use
 It is deeply integrated inside the core of iOS

68

PUBLIC

https://www.linkedin.com/company/synacktiv

https://x.com/synacktiv

https://bsky.app/profile/synacktiv.com

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://x.com/synacktiv
https://synacktiv.com/

