
Turning your Active Directory into the attacker’s C2
Modern Group Policy Objects enumeration and exploitation

DEFCON 33
2025/08/10

Whoami.exe

Quentin Roland
Pentester & Red Teamer

Wilfried Bécard
Red Teamer

2

Introduction

3

Introduction
Group Policy Objects: the (powerful) ugly ducklings of Active Directory exploitation

"Well yeah, we have an account that can modify a GPO applying to Domain
Controllers. But let us check the ADCS first..."
* Proceed to exploit an ESC4 and get detected *

― Anonymous colleagues, 2025

4

Introduction
Group Policy Objects: the (powerful) ugly ducklings of Active Directory exploitation

GPO attack vectors may just be the ugly ducklings of AD exploitation:
Obscure?

Risky?

Scarce tooling?

Which is a shame, since:
Well-equipped attackers may not have such concerns

GPOs exploitation leverages the powerful native C2 capabilities of Active Directory

■

■

■

■

■

■

■

5

Introduction
Table of contents

1. Group Policy Objects implementation 101

2. Leveraging Group Policy Objects for enumeration (gpoParser.py)

3. Abusing Group Policy Objects ACLs (GroupPolicyBackdoor.py)

4. Compromising Group Policy Objects via NTLM relaying (GPOddity.py)

5. Exploiting protected Organizational Units via GPO link poisoning (OUned.py)

6

Group Policy Objects implementation 101

7

Group Policy Objects implementation 101
Group Policy Objects basics

A GPO is a collection of configurations applied periodically to AD objects

It is a core feature in Active Directory for device and identity management

A GPO can define:
User configurations (applied by user objects)

Computer configurations (applied by computer objects)

■

■

■

■

■

8

Group Policy Objects implementation 101
Linking GPOs to Organizational Units

GPOs are not directly applied to users or computers, but
rather to Organizational Units

Can also apply to different objects such as Sites or
Domains but this is less common

By default, GPOs will be inherited from the parent
container

■

■

■

9

Group Policy Objects implementation 101
Group Policy Container and Group Policy Template

The implementation of GPOs in Active Directory is a bit peculiar

GPOs are made up of two components:

The Group Policy Container (GPC) - LDAP object
GPO metadata: name, description, version, etc.

The Group Policy Template (GPT) - SMB share
GPO files: describe the configurations to be applied by clients.

■

■

■

■

■

■

10

Group Policy Objects implementation 101
Group Policy Container and Group Policy Template

11

Group Policy Objects implementation 101
LDAP attributes

Noteworthy LDAP attributes:
On GPC objects:

gPCFileSysPath ― the UNC path to the GPT (generally the SYSVOL share)

flags ― status of user / computer configuration (enabled vs disabled)

gPCMachineExtensionNames / gPCUserExtensionNames ― a list of GUID pairs describing
which configuration the GPO defines for machines and users

On OU objects:
gPLink ― whether a GPO is linked / enforced or not

gPOptions ― whether inheritance is enabled or not

■

■

■

■

■

■

■

■

12

Group Policy Objects implementation 101
Group Policy Template

Policies defined across several files
Groups.xml

Registry.xml

GptTmpl.inf

And many more

cat corp.com/Policies/{78BAF44B-B890-4812-AEB8-C11AC2B29FD2}/
Machine/Microsoft/Windows NT/SecEdit/GptTmpl.inf
[Unicode]
Unicode=yes
[Version]
signature="$CHICAGO$"
Revision=1
[Group Membership]
*S-1-5-32-544__Memberof =
*S-1-5-32-544__Members = *S-1-5-21-361363594-1987475875-3919384990-1109

cat corp.com/Policies/{78BAF44B-B890-4812-AEB8-C11AC2B29FD2}/Machine/Preferences/Groups/Groups.xml
<?xml version="1.0" encoding="utf-8"?>
[...]
groupSid="S-1-5-32-555" groupName="Remote Desktop Users (built-in)"><Members><Member name="CORP\jack" action="ADD"
sid="S-1-5-21-361363594-1987475875-3919384990-1252"/></Members></Properties></Group>
</Groups>

■

■

■

■

■

13

Group Policy Objects implementation 101
Organizational Units attributes ― Inheritance

With inheritance

$ ldeep ldap -u bob -p password -d corp \
 -s 192.168.57.5 object -v 'workstations'
[...]
 "gPOptions": 0,

Without inheritance (gPOptions == 1)

$ ldeep ldap -u bob -p password -d corp \
 -s 192.168.57.5 object -v 'workstations'
[...]
 "gPOptions": 1,

■

■

14

Group Policy Objects implementation 101
Organizational Units attributes ― Link

GPOs are linked to OUs through the gPLink
attribute (list of GPO DNs)

Integer at the end of the gPLink attribute
describes the link status

Enforced GPOs will ignore the inheritance
status and will always apply to child containers

$ ldeep ldap -u bob -p password -d corp -s 192.168.57.5 object -v 'workstations'
[...]
 "dn": "OU=WORKSTATIONS,DC=CORP,DC=COM",
 "gPLink": "[LDAP://cn={78BAF44B-B890-4812-AEB8-C11AC2B29FD2},cn=policies,cn=system,DC=CORP,DC=COM;0]
 [LDAP://cn={01F34D14-C761-47F9-A0CF-C7A7F57999A5},cn=policies,cn=system,DC=CORP,DC=COM;1]
 [LDAP://cn={C91C6B48-2D8B-4830-B0CB-B0B6D2FBB0A5},cn=policies,cn=system,DC=CORP,DC=COM;2]",

■

■

■

15

Group Policy Objects implementation 101
Organizational Units attributes ― Link

Integer value Link enabled Enforced Meaning

0 Yes No GPO is linked and processed normally

1 No No GPO is unlinked (disabled), not processed

2 Yes Yes GPO is linked and enforced

3 No Yes GPO is enforced but link is disabled, not processed

16

Group Policy Objects implementation 101
Group Policies attributes ― Status

Status determines which
configurations will be applied

Enabled (all)

Only computer config

Only user config

Everything disabled

■

■

■

■

■

17

Group Policy Objects implementation 101
Group Policies attributes ― Status

Status is defined by the value of the flags attribute

$ ldeep ldap -u bob -p password -d corp -s 192.168.57.5 object -v '{474D47E2-2B77-4E37-9744-A3CF6AB04449}'
[...]
 "cn": "{78BAF44B-B890-4812-AEB8-C11AC2B29FD2}",
 "displayName": "Workstation admins",
 "distinguishedName": "CN={78BAF44B-B890-4812-AEB8-C11AC2B29FD2},CN=Policies,CN=System,DC=CORP,DC=COM",
 "flags": 1,

■

18

Group Policy Objects implementation 101
Group Policies attributes ― Status

Integer value User configuration Computer configuration Meaning

0 Enabled Enabled Both user and computer settings are applied

1 Disabled Enabled Only computer settings are applied

2 Enabled Disabled Only user settings are applied

3 Disabled Disabled Both settings are disabled (GPO has no effect)

19

Group Policy Objects implementation 101
Group Policies Application / Refresh interval

Default policy refresh
Background update every 90 minutes

Random offset of 0 to 30 minutes

This setting can be changed

Not all policies processed
Software installation only when a
computer starts and when a user
logs on

■

■

■

■

■

■

20

Group Policy Objects implementation 101
GPO application overview

21

Leveraging Group Policy objects for enumeration
Stealthy, detailed and targeted Active Directory reconnaissance using gpoParser.py

22

Leveraging Group Policy objects for enumeration
Offensive perspective

GPO enumeration
Reveals valuable insights into the security posture of a system

Most interesting configurations:
Group memberships or additions

Privilege assignments

Registry modifications

Scheduled tasks

■

■

■

■

■

■

■

23

Leveraging Group Policy objects for enumeration
Group memberships

Group memberships frequently defined through GPOs
Information that can prove crucial for lateral movement

Preferable to noisy wide-range scans (eg netexec 10.0.0.0/8)

Gives better understanding of group assignments and targets definition

■

■

■

■

24

Leveraging Group Policy objects for enumeration
Group memberships ― Example

$ ldeep ldap -u bob -p password -d corp -s 192.168.57.5 gpo
{008B0634-C0B9-443A-A06A-E2BAD875E27F}: Allow RDP
{B2510EC3-8C2D-41DE-A70B-69E8FD8276B2}: Firewall - dev
{01F34D14-C761-47F9-A0CF-C7A7F57999A5}: Intune Auto Enrollment
{C91C6B48-2D8B-4830-B0CB-B0B6D2FBB0A5}: WSUS
{185ABAA4-75CA-4702-9027-877B89057E17}: Citrix access
{570CD979-1B09-4E25-A16E-CC382F65F310}: Admin - Hardening
{474D47E2-2B77-4E37-9744-A3CF6AB04449}: Workstation admins
{6AC1786C-016F-11D2-945F-00C04fB984F9}: Default Domain Controllers Policy
{31B2F340-016D-11D2-945F-00C04FB984F9}: Default Domain Policy

$ cat CORP.COM/Policies/{008B0634-C0B9-443A-A06A-E2BAD875E27F}/Machine/Preferences/Groups/Groups.xml
<Groups clsid="{3125E937-EB16-4b4c-9934-544FC6D24D26}">
 <Group clsid="{6D4A79E4-529C-4481-ABD0-F5BD7EA93BA7}"name="Remote Desktop Users (built-in)" image="2"
 changed="2025-06-26 12:18:45" uid="{F2EFF8C4-CC57-4FD8-A06D-2C0490E16277}">
 <Properties action="U" newName="" description="" deleteAllUsers="0" deleteAllGroups="0"
 removeAccounts="0" groupSid="S-1-5-32-555" groupName="Remote Desktop Users (built-in)">
 <Members>
 <Member name="CORP\Domain Users" action="ADD" sid="S-1-5-21-691320112-1392913536-3019603446-513"/>
 </Members>
 </Properties>
 </Group>
</Groups>

25

Leveraging Group Policy objects for enumeration
Group memberships ― Example

$ ldeep ldap -u bob -p password -d corp -s 192.168.57.5 ou
[...]
OU=WORKSTATIONS,DC=CORP,DC=COM
 [gPLink]:
 * Allow RDP

$ ldeep ldap -u bob -p password -d corp -s 192.168.57.5 \
-b 'OU=WORKSTATIONS,DC=CORP,DC=COM' computers
WKS01.CORP.COM

26

Leveraging Group Policy objects for enumeration
Privilege assignments

Interesting privileges can be assigned through GPO
Relatively uncommon

■

■

27

Leveraging Group Policy objects for enumeration
Privilege assignments ― Real life examples

But it happens!
SeTcbPrivilege to any user on machines affected by this GPO

Free privilege escalation

$ cat "Policies/{5F400B8A-5F8D-475E-AC3A-5A1C5A7AAF0B}/Machine/microsoft/windows nt/SecEdit/GptTmpl.inf"
[Unicode]
Unicode=yes
[Version]
signature="$CHICAGO$"
Revision=1
[Privilege Rights]
SeTcbPrivilege = *S-1-5-32-545

■

■

■

28

Leveraging Group Policy objects for enumeration
Privilege assignments ― Real life examples

Connection restrictions can be enforced
Reduces the risk of credential exposure for privileged accounts

Mitigates privilege escalation and upholds the tiering model

■

■

■

29

Leveraging Group Policy objects for enumeration
Registry modifications ― Real life examples

Registry modifications
Provides valuable insights into system hardening measures

Legacy name resolution protocols (LLMNR, NBNS, mDNS) often disabled through GPO

Eases reconnaissance / helps to determine the feasibility of related attacks

cat /corp.com/policies/{31B2F340-016D-11D2-945F-00C04FB984F9}/MACHINE/Preferences/Registry/Registry.xml
<?xml version="1.0" encoding="utf-8"?>
<RegistrySettings clsid="{A3CCFC41-DFDB-43a5-8D26-0FE8B954DA51}">
 <Registry clsid="{9CD4B2F4-923D-47f5-A062-E897DD1DAD50}" name="EnableMDNS" status="EnableMDNS" image="12"
 changed="2025-06-26 13:03:46" uid="{0BEC7FF0-5903-4167-BFE5-957A59C00DDA}">
 <Properties action="U" displayDecimal="1" default="0"
 hive="HKEY_LOCAL_MACHINE"
 key="SYSTEM\CurrentControlSet\Services\Dnscache\Parameters" name="EnableMDNS" type="REG_DWORD" value="00000000"/>
 </Registry>
</RegistrySettings>

■

■

■

■

30

Leveraging Group Policy objects for enumeration
Registry modifications ― Real life examples

More information can be gathered
Hardening (LDAP / SMB signature, RunAsPPL, CredGuards)

Additional software installation (EDRs)

■

■

■

31

Leveraging Group Policy objects for enumeration
Enumeration automation with gpoParser.py

GPO enumeration can be time-consuming and complex
Check for inheritance

Check for enforced links

Check for computer / user configuration state (enabled vs disabled)

Automation is the key!

■

■

■

■

■

32

Leveraging Group Policy objects for enumeration
Enumeration ― BloodHound limitations

33

Leveraging Group Policy objects for enumeration
Enumeration automation with gpoParser.py

Introducing gpoParser.py
Parses all GPO configuration parameters

Reveals misconfigurations and privilege relationships

Supports both online (live AD) and offline (tool-assisted) analysis

Enriches BloodHound with useful edges:
AdminTo

CanRDP

CanPSRemote

https://github.com/synacktiv/gpoParser

■

■

■

■

■

■

■

■

■

34

https://github.com/synacktiv/gpoParser

Leveraging Group Policy objects for enumeration
Enumeration automation with gpoParser.py

Demonstration

35

Abusing Group Policy Objects ACLs
Turning Active Directory into your personal C2

36

Abusing Group Policy Objects ACLs
Exploitation context

Situation in which a controlled account has write privileges over a GPO

Not an uncommon situation (T1 accounts, administration mistakes etc.)

Possibility to:
Compromise all objects in linked OUs (including sub-OUs)

But also any user connecting to a machine of an affected OU

■

■

■

■

■

37

Abusing Group Policy Objects ACLs
GPO attack vectors

Leverage built-in GPO features to deploy malicious configurations:
Scheduled tasks

Immediate tasks

Adding users to local groups

Transferring and executing arbitrary files

Setting registry keys (disabling self-relay protections ?)

Logon/Logoff scripts

And many more

Imagination is the only limit when it comes to GPO attack vectors

■

■

■

■

■

■

■

■

■

38

Abusing Group Policy Objects ACLs
Existing tools and limitations

Current offensive tooling for GPO ACLs exploitation:
SharpGPOAbuse (.NET)

pyGPOAbuse (python, impacket)

GPOwned (python)

DRSAT (GPMC GUI)

Limitations: stability and exploit safety, cleanup and revert capabilities, GPO
creation, links management, item-level targeting, available actions and options

■

■

■

■

■

■

39

Abusing Group Policy Objects ACLs
Introducing GroupPolicyBackdoor.py

Introducing GroupPolicyBackdoor.py:
Python implementation using ldap3 and smbprotocol

GPO creation, deletion & backup

Links management

Injection of customizable configurations

Only applies configurations to specific clients with item-level targeting

GPO cleanup capabilities

Reverse performed actions on clients

https://github.com/synacktiv/GroupPolicyBackdoor

■

■

■

■

■

■

■

■

■

40

https://github.com/synacktiv/GroupPolicyBackdoor

Abusing Group Policy Objects ACLs
Exploitation example and demonstration

Account compromised with write privileges over a GPO applying to a jump server
used by domain administrators

No network access to these jump servers

GPO exploitation steps:
Add a Scheduled Task on the jump server

Configure the Scheduled Task to run in the context of a high-privileges user

Configure the Scheduled Task to add an account to the Domain Admins group

GPO does not apply directly to a domain admin, but used to trap the jump server

■

■

■

■

■

■

■

41

Abusing Group Policy Objects ACLs
Exploitation example and demonstration

Demonstration

42

Abusing Group Policy Objects ACLs
More exploitation scenarios

More exploitation scenarios encountered during missions:
Reach network-isolated workstations by deploying an implant via GPO file transfer

Enable WinRM and add a firewall exception through GPO to pivot to a sensitive server

Persist in the Active Directory environment after detection by poisoning a GPO

GroupPolicyBackdoor.py can be extended for your use cases

■

■

■

■

■

43

Compromising Group Policy Objects via NTLM
relaying

Advanced GPO exploitation part 1

44

Compromising Group Policy Objects via NTLM relaying
Exploitation context

Active Directory environment vulnerable to NTLM relaying to the LDAP service

User with write privileges over an interesting GPO relayed to LDAP

Context in which it is possible to modify the GPC (LDAP), but no
privileges over the GPT (SMB)

No direct control over the GPO configuration files

Is this exploitable ?

■

■

■

■

■

45

Compromising Group Policy Objects via NTLM relaying
Spoofing the GPT location by manipulating the gPCFileSysPath attribute

The GPC defines an interesting attribute, gPCFileSysPath

Specifies the location of the GPT as a UNC path
Points by default to the SYSVOL share of the PDC

It is possible to specify an arbitrary SMB share location in this attribute

Legitimate, intended feature rather than a bug ― but also kind of a gray area

■

■

■

■

■

46

Compromising Group Policy Objects via NTLM relaying
Spoofing the GPT location by manipulating the gPCFileSysPath attribute

1 $ smbserver.py -smb2support synacktiv .
2 [...]
3 [*] Incoming connection (192.168.123.17,49753)
4 [*] AUTHENTICATE_MESSAGE (CORP\AD01-SRV1$,AD01-SRV1)

47

Compromising Group Policy Objects via NTLM relaying
Attack exclusively relying on GPC modifications and exploitable via NTLM relaying

48

Compromising Group Policy Objects via NTLM relaying
Attack automation with GPOddity.py

The GPOddity.py tool was created to automate the attack
https://github.com/synacktiv/GPOddity

Main implementation challenge: simulate a working domain-joined SMB server
The SMB server needs to properly authenticate clients

GPOddity.py performs NETLOGON authentication for this purpose

■

■

■

■

■

49

https://github.com/synacktiv/GPOddity

Compromising Group Policy Objects via NTLM relaying
Attack automation with GPOddity.py

Demonstration

50

Exploiting protected Organizational Units via GPO
link poisoning

Advanced GPO exploitation part 2

51

Exploiting protected Organizational Units via GPO link poisoning
Exploitation context

The GPOs are linked Organizational Units through the gPLink attribute

[LDAP://cn={78BAF44B-B890-4812-AEB8-C11AC2B29FD2},cn=policies,cn=system,DC=corp,DC=com;0][...]

With write access to an OU object, Petros Koutroumpis showed that it is possible to
add a gPLink item corresponding to a malicious GPO

The OU objects would then apply the injected GPO

■

■

■

52

Exploiting protected Organizational Units via GPO link poisoning
Comparison with other OUs attack vectors

Existing OU attack vector relies on ACL inheritance

A GenericAll ACL is added to the OU security descriptor, and is inherited

Simple and reliable attack, however:
Necessitates WriteDACL privileges to modify the security descriptor

Cannot be used against protected objects (adminCount=1)

gPLink poisoning exploitable with limited privileges and for protected objects

■

■

■

■

■

■

53

Exploiting protected Organizational Units via GPO link poisoning
The gPLink poisoning attack

gPLink attribute modified to inject an additional GPO link to the OU

The DN points to the attacker's machine

[...][LDAP://cn={78BAF44B-B890-4812-AEB8-C11AC2B29FD2},cn=policies,cn=system,DC=attacker,DC=corp,DC=com;0]

The attacker simulates a GPC, indicating that the GPT is also hosted on their
machines

OUned tool created to automate the attack
https://github.com/synacktiv/OUned

WriteGPLink and GenericWrite BloodHound edges added on OUs

■

■

■

■

■

■

54

https://github.com/synacktiv/OUned

Exploiting protected Organizational Units via GPO link poisoning
The gPLink poisoning attack

55

Exploiting protected Organizational Units via GPO link poisoning
Attack demonstration with OUned

Demonstration

56

Conclusion

57

Conclusion

Risks associated with GPO exploitation may be underestimated today
GPOs provide powerful enumeration and exploitation primitives

Knowledge gaps lead to security blind spots, that should be addressed with:
Better understanding of GPO inner workings

Better enumeration and exploitation tooling

GPOs are fun and there is much more to be done!

■

■

■

■

■

■

58

https://www.linkedin.com/company/synacktiv

https://x.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://x.com/synacktiv
https://synacktiv.com/

