

## **Beyond post-quantum stereotypes**

Antoine Gicquel & Benjamin Sepe Hack.lu 2025

### **About us**





Antoine Gicquel

Pentester / Security auditor

@bluesheeet.bsky.social

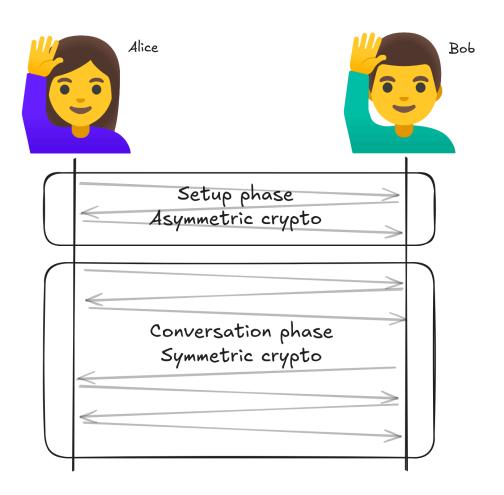


**Benjamin Sepe**Pentester / Security auditor
@butanol.bsky.social

### **Table of Contents**

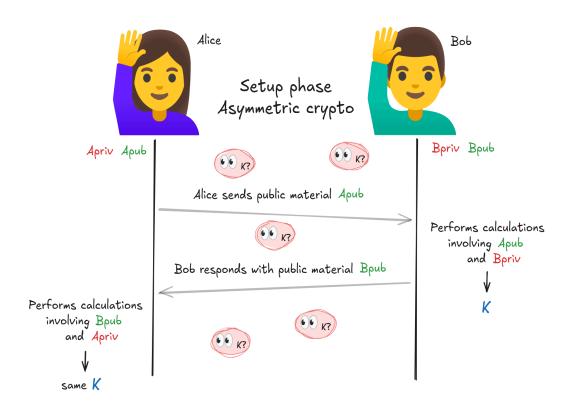





- What does "secure" mean in cryptography?
- How do quantum computing affect the security of cryptographic algorithms?
- Upgrading your cryptography to post-quantum...
- ... and auditing it!



# <u>Ref</u>reshers

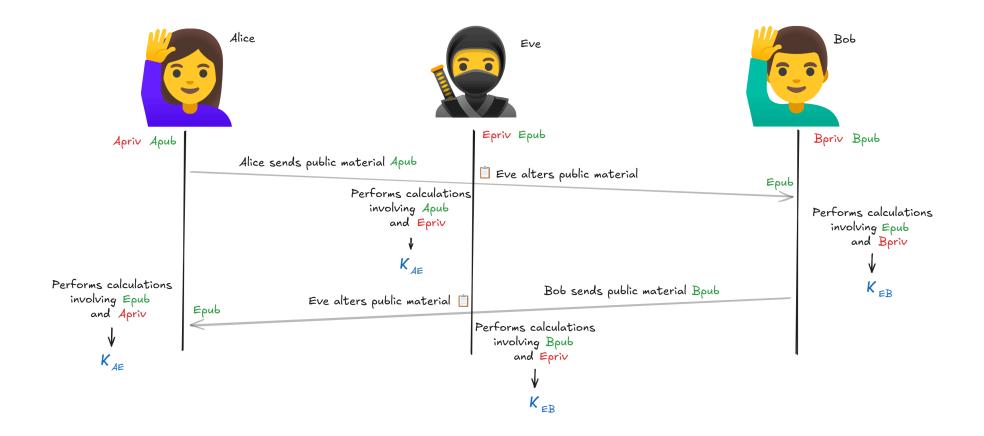



- A simple goal: to enable Alice and Bob to have a secure conversation
- A smart combination of two paradigms
  - Asymmetric (Public-Key)
     Cryptography: For the initial setup
  - **Symmetric Cryptography**: For the actual conversation





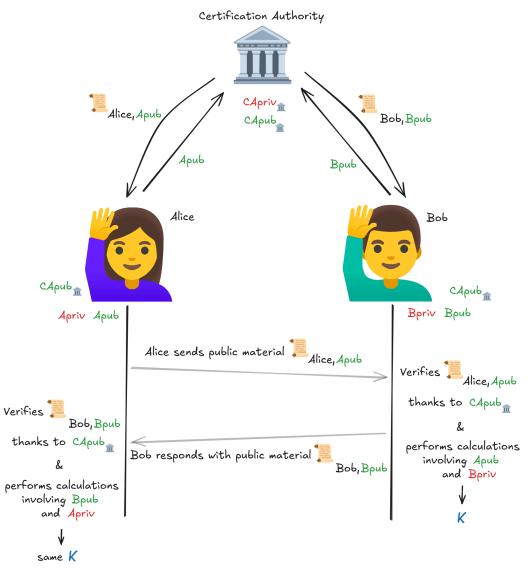
Key Exchange




- Securely agree on a shared secret key thanks to asymmetric crypto
- Over the untrusted internet
- Follow-up messages can be encrypted with  ${\cal K}$



Trust


#### How can Alice trust Bob's public key?



**[** Certificates and signatures

- Signature from a trusted Certificate Authority (CA)
- It links a public key to an identity (Bob)
- Alice verifies the CA's signature thanks to a pre-trusted CA public key



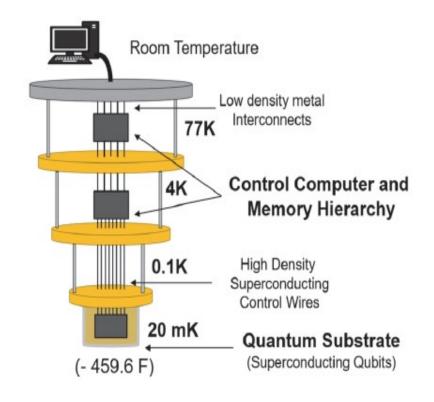




Communications mainly rely on 3 primitives

- Signing data
- Establishing a shared secret
- Encrypting with symmetric algorithms
- Security = difficulty for an attacker to falsify or decrypt information
- Difficulty = number of computational operations
- Good security: >2<sup>100</sup> operations, impractical even in the next few decades
- Example: AES-128, symmetric scheme, best attack is bruteforcing the key,  $2^{128}$  op.

Security




## A quantum threat to security

## **Quantum Computing vs. Crypto**



- Based on new principles: Uses qubits instead of classical bits
- **Superposition**: Wave function, probability to read  $\mathbf{0}$  /  $\mathbf{1}$  for each bit
- Entanglement: Qubits can be linked, their states correlated
- Quantum computers can solve certain problems exponentially faster



### **Quantum Computing vs. Crypto**



- Shor's Algorithm: finding periods in any function ( n<sup>3</sup> )
  - Breaks integer factorisation & discrete log
  - Asymmetric crypto in danger
  - **Example:** factoring a 2048-bit integer
    - Classical:  $2^{112}$  operations  $\rightarrow$  secure  $\checkmark$
    - Quantum:  $2048^3$  ( $\sim 2^{33}$ ) operations  $\rightarrow$  insecure  $\times$
- Grover's algorithm: enhancing bruteforce, quadratic speedup (  $2^n \rightarrow 2^{n/2}$  ) <sup>1</sup>
  - Symmetric crypto in danger
  - **Example:** AES-128
    - Quantum:  $\sim 2^{64}$  operations  $\rightarrow$  insecure  $\times$
    - AES-256 stays secure vs. quantum computer,  $\sim 2^{128}$  operations  $\rightarrow$  secure  $\boxed{V}$

<sup>1:</sup> https://davidbkemp.github.io/animated-qubits/grover.html

### **The impacts on our secure channel**



So, what breaks in our Alice and Bob setup?

- Key exchange (DH, ECC): broken! X
  - Shor's algorithm solves their underlying math problems
- Digital signatures (RSA, ECDSA): broken! X
  - Also vulnerable to Shor. Certificates can be forged
- Symmetric encryption (AES): weakened! <a>h</a>
  - Grover's algorithm halves the effective key length
  - Use AES-256 instead of AES-128





- Need to find new math problems that are hard for both classical and quantum computers
  - Lattice-based problems: <u>ML-KEM</u>, <u>ML-DSA</u>, Falcon, ...
  - Code-based problems: BIKE, <u>HQC</u>
  - Hash-based problems: <u>SLH-DSA</u>, <u>XMSS</u>
  - Multivariate Quadratic polynomial equations: UOV
  - • •
- These algorithms run on classical computers
  - Post-quantum is **not** quantum

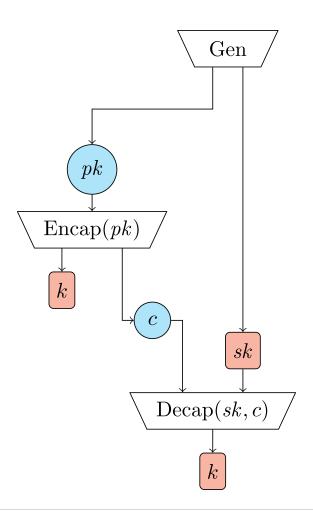


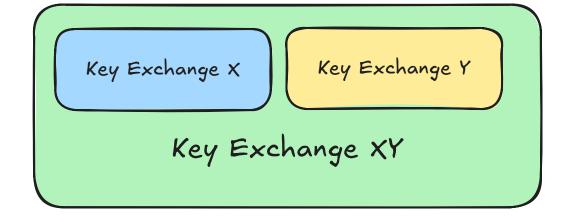
Hybridization

#### New algorithms are not "battle-tested"

• e.g., SIDH, a former candidate, was broken in 2022

#### → Hybridization

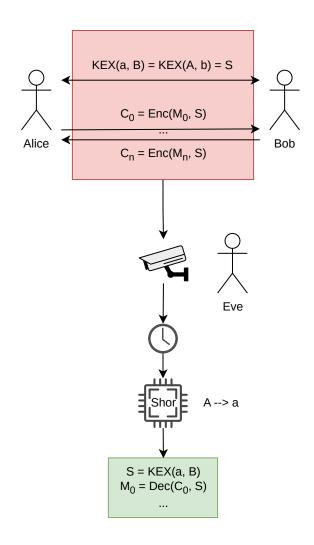

- Combine a classical algorithm (e.g., ECDH) with a PQC one (e.g., ML-KEM)
- Security is at least as good as the strongest of the two
- A crucial safety net if the PQC algorithm fails
- See the recently-published articles on the Synacktiv blog <sup>1 2</sup>


<sup>1:</sup> https://www.synacktiv.com/en/publications/quantum-readiness-hybridizing-key-exchanges

<sup>2:</sup> https://www.synacktiv.com/en/publications/quantum-readiness-hybridizing-signatures

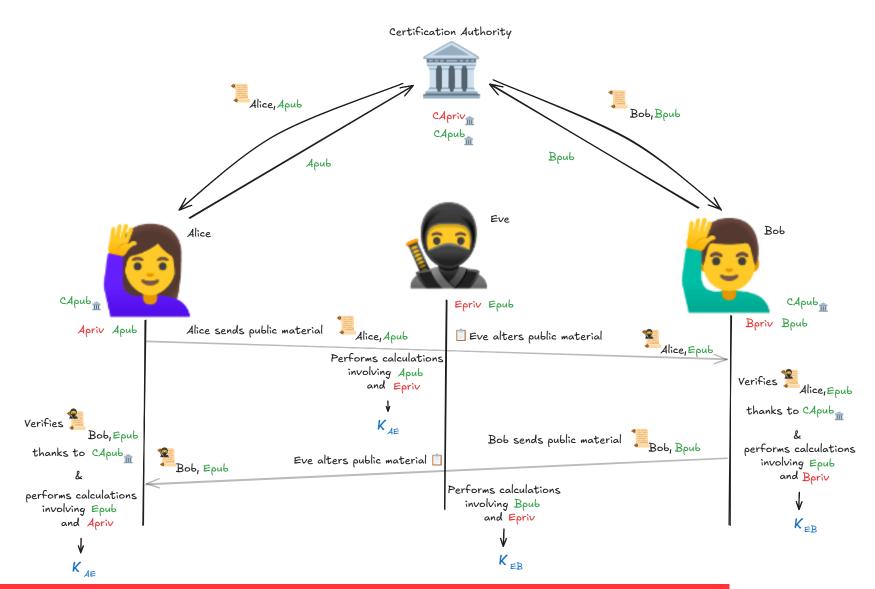


Hybridization






Issues to tackle


- Today's issue: Store now / Decrypt later
  - Upgrade key exchanges ASAP!
- Tomorrow's issue: Authenticating
  - Signature forgery with quantum computing
  - Update your keys / certificates to use PQ signature schemes
  - Needs regeneration of all secrets





**SYNACKTIV** 

Signature forgery





For organizations

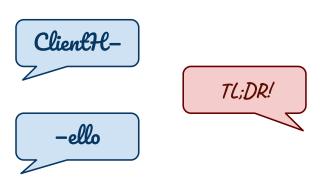
- **Pre-requisite**: What crypto do I use? Where do I use it in my organization?
- PQ transition may already have started in your organization
  - ullet Chrome >131 sends ClientHello with Hybrid ML-KEM / X25519 by default  $^1$
  - CloudFlare / Google / Azure support Hybrid ML-KEM / X25519
  - All major web reverse proxies support Hybrid ML-KEM / X25519 in their latest version
  - Recent OpenSSH (client & server) uses hybrid key exchange by default



For organizations

#### So it's that easy?

- You may use other stuff (MACSec? Exotic VPN?) with no automatic update process
- Microsoft is actively working to get PQC support to [their] Windows customers via the Windows TLS stack (Schannel) <sup>1</sup>
- All of the previous is for key exchanges, don't forget signatures !!


#### Check your infra and contact vendors!

1: https://techcommunity.microsoft.com/blog/microsoft-security-blog/post-quantum-cryptography-comes-to-windows-insiders-and-linux/4413803



Some bugs along the way

- PQC algorithms have much larger keys and signatures
- Sometimes broke existing protocols and systems<sup>1</sup>
  - Large PQC keys may not fit in a single TCP packet
  - → fragmented ClientHello / ServerHello
  - Packet fragmentation can cause network gear to fail





# ... and auditing it!

## ... and auditing it!




The math is new, but the audit process is not.

Auditing PQC implementations is like auditing classical crypto.

- Verify standards compliance
  - Uses standard parameters (e.g., NIST FIPS 204)?
  - Passes all official test vectors?
- Hunt for implementation bugs and leaks
  - Random number generation
  - Key management
  - Look for common side-channel vulnerabilities
    - Timing attacks: Is execution time constant?
    - Cache attacks: Do memory access patterns leak secrets?
    - Physical attacks: Power analysis, EM emissions, ...

If you can audit classical crypto implementations now, you can audit PQ crypto implementations now.



# **Questions?**

## **ESYNACKTIV**



https://www.linkedin.com/company/synacktiv



https://x.com/synacktiv



https://bsky.app/profile/synacktiv.com



https://synacktiv.com